Part Number Hot Search : 
MMBT390 8A977BP 11100 MA3X786 YG912S2 67000 DTA144E CXP81100
Product Description
Full Text Search
 

To Download MVTX2803 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 MVTX2803
Unmanaged 8-Port 1000 Mbps Ethernet Switch Data Sheet
Features
* Eight Gigabit Ports with GMII and PCS interface * Gigabit Port can also support 100/10 Mbps MII interface High Performance Layer 2 Packet Forwarding (23.808M packets per second) and Filtering at Full-Wire Speed Maximum throughput is 8 Gbps non-blocking Centralized shared-memory architecture Consists of two Memory Domains at 133 MHz * Frame Buffer Domain: Two banks of ZBTSRAM with 2M/4MB total * Switch Database Domain with 256K/512K SRAM Up to 64K MAC addresses to provide large node aggregation in wiring closet switches Ordering Information MVTX2803AG 596 Pin HSBGA -40C to 85C * User controlled thresholds for WRED Classification based on layer 2, 3 markings * VLAN Priority field in VLAN tagged frame * DS/TOS field in IP packet The precedence of above two classifications can be programmable
February 2003
*
* * *
*
*
*
QoS Support
* * * Supports IEEE 802.1p/Q Quality of Service with 8 Priority Buffer Management: reserve buffers on per class and per port basis Port-based Priority: VLAN Priority with Tagged frame can be overwritten by the priority of PVID
Traffic Classification
* * * Classify traffic into 8 transmission priorities per port Supports Delay bounded, Strict Priority and WFQ Provides 2 level dropping precedence with WRED mechanism
Frame Data Buffer A ZBT-SRAM (1M/2Mb) MVTX2803 64-Bit FDB Interface
Frame Data Buffer B ZBT-SRAM (1M/2Mb) 64-Bit
SRAM 256/512K SW Database MAC Table 32-Bit SDB Interface LED
Frame Engine
Search Engine
Schedule
NM Database
Management Module
GMII /PCS Port 0
GMII /PCS Port 1
GMII /PCS Port 2
GMII /PCS Port 3
GMII /PCS Port 4
GMII /PCS Port 5
GMII /PCS Port 6
GMII /PCS Port 7
Serial / I2C
Figure 1 - MVTX2803AG Block Diagram
1
MVTX2803
* * * * * * * * * *
Data Sheet
QoS features can be configured on a per port basis Full Duplex Ethernet IEEE 802.3x Flow Control Provides Ethernet Multicast and Broadcast Control 4 Port Trunking groups, max of 3 ports per group (Trunking can be based on source MAC and/or destination MAC and source port) LED signals provided by a serial or parallel interface Synchronous Serial Interface and I2C interface in unmanaged mode. Hardware auto-negotiation through serial management interface (MDIO) for Gigabit Ethernet ports, supports 10/100/1000 Mbps BIST for internal and external SRAM-ZBT I2C EEPROM or synchronous serial port for configuration Packaged in 596-pin BGA
Description
The MVTX2800 family is a group of 1000 Mbps non-blocking Ethernet switch chips with on-chip address memory. A single chip provides a maximum of eight 1000 Mbps ports and a dedicated CPU interface with a 16/8 bit bus for managed and unmanaged switch applications. The MVTX2800 family consists of the following four products: * * * * MVTX2804 MVTX2803 MVTX2802 MVTX2801 8 8 4 4 Gigabit Gigabit Gigabit Gigabit ports ports ports ports Managed Unmanaged Managed Unmanaged
The MVTX2803 supports up to 64K MAC addresses to aggregate traffic from multiple wiring closet stacks. The centralized shared-memory architecture allows a very high performance packet-forwarding rate of 11.904M packets per second at full wire speed. The chip is optimized to provide a low-cost, high performance workgroup, and wiring closet, layer 2 switching solution with 8 Gigabit Ethernet ports. Two Frame Buffer Memory domains utilize cost effective, high-performance ZBT-SRAM with aggregated bandwidth of 16Gbps to support full wire speed on all external ports simultaneously. With Strict priority, Delay Bounded, and WRR transmission scheduling, plus WRED memory congestion scheme, the chip provides powerful QoS functions for convergent network multimedia and mission-critical applications. The chip provides 8 transmission priorities and 2 level drop precedence. Traffic is assigned its transmission priority and dropping precedence based on the frame VLAN Tag priority. The MVTX2803AG supports port trunking/load sharing on the 1000 Mbps ports with fail-over capability. The port trunking/load sharing can be used to group ports between interlinked switches to increase the effective network bandwidth. In full-duplex mode, IEEE 802.3x flow control is provided. The Physical Coding Sublayer (PCS) is integrated onchip to provide a direct 10-bit GMII interface, or the PCS can be bypassed to provide an interface to existing fiber-based Gigabit Ethernet transceivers. The MVTX2803AG is fabricated using 0.25m technology. Inputs, however, are 3.3V tolerant and the outputs are capable of directly interfacing to LVTTL levels. The MVTX2803AG is packaged in a 596-pin Ball Grid Array package.
2
Zarlink Semiconductor Inc.
Data Sheet
MVTX2803 Table of Contents
1.0 Block Functionality ...........................................................................................................15
1.1 Frame Data Buffer (FDB) Interfaces........................................................................................................... 15 1.2 Switch Database (SDB) Interface............................................................................................................... 15 1.3 GMII/PCS MAC Module (GMAC) .............................................................................................................. 15 1.4 Frame Engine ............................................................................................................................................ 15 1.5 Search Engine ........................................................................................................................................... 15 1.6 LED Interface.............................................................................................................................................. 15 1.7 Internal Memory ......................................................................................................................................... 15
2.0 System Configuration .......................................................................................................15
2.1 I2C Interface ............................................................................................................................................... 16 2.1.1 Start Condition .................................................................................................................................. 16 2.1.2 Address ............................................................................................................................................. 16 2.1.3 Data Direction ................................................................................................................................... 16 2.1.4 Acknowledgment............................................................................................................................... 16 2.1.5 Data................................................................................................................................................... 16 2.1.6 Stop Condition................................................................................................................................... 16 2.2 Synchronous Serial Interface ..................................................................................................................... 16 2.2.1 Write Command ................................................................................................................................ 17 2.2.2 Read Command ................................................................................................................................ 17
3.0 Data Forwarding Protocol ................................................................................................17
3.1 Unicast Data Frame Forwarding................................................................................................................. 17 3.2 Multicast Data Frame Forwarding ............................................................................................................. 18
4.0 Memory Interface...............................................................................................................18
4.1 Overview .................................................................................................................................................... 18 4.2 Detailed Memory Information ..................................................................................................................... 19
5.0 Search Engine ...................................................................................................................19
5.1 Search Engine Overview ........................................................................................................................... 19 5.2 Basic Flow .................................................................................................................................................. 20 5.3 Search, Learning, and Aging ...................................................................................................................... 20 5.3.1 MAC Search...................................................................................................................................... 20 5.3.2 Learning ............................................................................................................................................ 20 5.3.3 Aging ................................................................................................................................................. 20 5.3.4 Data Structure ................................................................................................................................... 20
6.0 Frame Engine.....................................................................................................................21
6.1 Data Forwarding Summary ........................................................................................................................ 21 6.2 Frame Engine Details ................................................................................................................................. 21 6.2.1 FCB Manager.................................................................................................................................... 21 6.2.2 Rx Interface....................................................................................................................................... 21 6.2.3 RxDMA.............................................................................................................................................. 21 6.2.4 TxQ Manager .................................................................................................................................... 21 6.3 Port Control ................................................................................................................................................ 22 6.4 TxDMA........................................................................................................................................................ 22
7.0 Quality of Service and Flow Control................................................................................22
7.1 Model ......................................................................................................................................................... 22 7.2 Four QoS Configurations............................................................................................................................ 23 7.3 Delay Bound ............................................................................................................................................... 24 7.4 Strict Priority and Best Effort ...................................................................................................................... 24 7.5 Weighted Fair Queuing............................................................................................................................... 24 7.6 Shaper ........................................................................................................................................................ 24 7.7 WRED Drop Threshold Management Support ........................................................................................... 25
Zarlink Semiconductor Inc.
iii
MVTX2803 Table of Contents
Data Sheet
7.8 Buffer Management ....................................................................................................................................25 7.8.1 Dropping When Buffers Are Scarce ..................................................................................................26 7.9 MVTX2803AG Flow Control Basics ............................................................................................................26 7.9.1 Unicast Flow Control .........................................................................................................................27 7.9.2 Multicast Flow Control .......................................................................................................................27 7.10 Mapping to IETF Diffserv Classes ............................................................................................................27
8.0 Port Trunking .................................................................................................................... 28
8.1 Features and Restrictions ..........................................................................................................................28 8.2 Unicast Packet Forwarding ........................................................................................................................28 8.3 Multicast Packet Forwarding.......................................................................................................................29 8.4 Preventing Multicast Packets from Looping Back to the Source Trunk ......................................................29
9.0 LED Interface.................................................................................................................... 29
9.1 Introduction ................................................................................................................................................29 9.2 Serial Mode.................................................................................................................................................29 9.3 Parallel Mode ..............................................................................................................................................30 9.4 LED Control Registers ................................................................................................................................30
10.0 Register Definition.......................................................................................................... 31
10.1 MVTX2803AG Register Description .........................................................................................................31 10.2 Group 0 Address - MAC Ports Group .......................................................................................................36 10.2.1 ECR1Pn: Port N Control Register ...................................................................................................36 10.2.2 ECR2Pn: Port N Control Register ...................................................................................................39 10.2.3 GGControl 0- Extra GIGA Port Control...........................................................................................40 10.2.4 GGControl 1- Extra GIGA Port Control...........................................................................................40 10.2.5 GGControl 2- Extra GIGA Port Control...........................................................................................41 10.2.6 GGControl 3- Extra GIGA Port Control...........................................................................................42 10.3 Group 1 Address - VLAN Group ...............................................................................................................42 10.3.1 AVTCL - VLAN Type Code Register Low.......................................................................................42 10.3.2 AVTCH - VLAN Type Code Register High .....................................................................................42 10.3.3 PVMAP00_0 - Port 00 Configuration Register 0 ............................................................................43 10.3.4 PVMAP00_3 - Port 00 Configuration Register 3 ............................................................................43 10.3.5 PVMODE.........................................................................................................................................44 10.4 Group 2 Address - Port Trunking Group ...................................................................................................45 10.4.1 TRUNK0_MODE - Trunk group 0 and 1 mode...............................................................................45 10.4.2 TRUNK1_MODE - Trunk group 1 mode (Unmanaged Mode) ........................................................45 10.4.3 TX_AGE - Tx Queue Aging timer ...................................................................................................46 10.5 Group 4 Address - Search Engine Group .................................................................................................46 10.5.1 AGETIME_LOW - MAC address aging time Low ...........................................................................46 10.5.2 AGETIME_HIGH -MAC address aging time High ..........................................................................46 10.5.3 SE_OPMODE - Search Engine Operation Mode ..........................................................................47 10.6 Group 5 Address - Buffer Control/QOS Group .........................................................................................47 10.6.1 FCBAT - FCB Aging Timer .............................................................................................................47 10.6.2 QOSC - QOS Control .....................................................................................................................47 10.6.3 FCR - Flooding Control Register ....................................................................................................48 10.6.4 AVPML - VLAN Priority Map...........................................................................................................49 10.6.5 AVPMM - VLAN Priority Map..........................................................................................................49 10.6.6 AVPMH - VLAN Priority Map ..........................................................................................................49 10.6.7 OSPML - TOS Priority Map ............................................................................................................50 10.6.8 TOSPMM - TOS Priority Map .........................................................................................................50 10.6.9 TOSPMH - TOS Priority Map .........................................................................................................50 10.6.10 AVDM - VLAN Discard Map .........................................................................................................51 10.6.11 TOSDML - TOS Discard Map.......................................................................................................52
iv
Zarlink Semiconductor Inc.
Data Sheet
MVTX2803 Table of Contents
10.6.12 BMRC - Broadcast/Multicast Rate Control.................................................................................... 52 10.6.13 UCC - Unicast Congestion Control............................................................................................... 53 10.6.14 MCC - Multicast Congestion Control ............................................................................................ 53 10.6.15 PRG - Port Reservation for Giga ports......................................................................................... 53 10.6.16 SFCB - Share FCB Size............................................................................................................... 54 10.6.17 C2RS - Class 2 Reserved Size .................................................................................................... 54 10.6.18 C3RS - Class 3 Reserved Size .................................................................................................... 55 10.6.19 C4RS - Class 4 Reserved Size .................................................................................................... 55 10.6.20 C5RS - Class 5 Reserved Size .................................................................................................... 55 10.6.21 C6RS - Class 6 Reserved Size .................................................................................................... 55 10.6.22 C7RS - Class 7 Reserved Size .................................................................................................... 56 10.6.23 QOSC00 - BYTE_C2_G0............................................................................................................. 56 10.6.24 QOSC01 - BYTE_C3_G0............................................................................................................. 56 10.6.25 QOSC02 - BYTE_C4_G0............................................................................................................. 56 10.6.26 QOSC03 - BYTE_C5_G0............................................................................................................. 56 10.6.27 QOSC04 - BYTE_C6_G0............................................................................................................. 57 10.6.28 QOSC05 - BYTE_C7_G0............................................................................................................. 57 10.6.29 QOSC06 - BYTE_C2_G1............................................................................................................. 57 10.6.30 QOSC07 - BYTE_C3_G1............................................................................................................. 57 10.6.31 QOSC08 - BYTE_C4_G1............................................................................................................. 58 10.6.32 QOSC09 - BYTE_C5_G1............................................................................................................. 58 10.6.33 QOSC0A - BYTE_C6_G1 ............................................................................................................ 58 10.6.34 QOSC0B - BYTE_C7_G1 ............................................................................................................ 58 10.6.35 QOSC0C - BYTE_C2_G2 ............................................................................................................ 58 10.6.36 QOSC0D - BYTE_C3_G2 ............................................................................................................ 59 10.6.37 QOSC0E - BYTE_C4_G2 ............................................................................................................ 59 10.6.38 OSC0F - BYTE_C5_G2 ............................................................................................................... 59 10.6.39 QOSC10 - BYTE_C6_G2............................................................................................................. 59 10.6.40 QOSC11 - BYTE_C7_G2............................................................................................................. 59 10.6.41 QOSC12 - BYTE_C2_G3............................................................................................................. 60 10.6.42 QOSC13 - BYTE_C3_G3............................................................................................................. 60 10.6.43 QOSC14 - BYTE_C4_G3............................................................................................................. 60 10.6.44 QOSC15 - BYTE_C5_G3............................................................................................................. 60 10.6.45 QOSC16 - BYTE_C6_G3............................................................................................................. 60 10.6.46 QOSC17 - BYTE_C7_G3............................................................................................................. 61 10.6.47 QOSC18 - BYTE_C2_G4............................................................................................................. 61 10.6.48 QOSC019 - BYTE_C3_G4........................................................................................................... 61 10.6.49 QOSC1A - BYTE_C4_G4 ............................................................................................................ 61 10.6.50 QOSC1B - BYTE_C5_G4 ............................................................................................................ 61 10.6.51 QOSC1C - BYTE_C6_G4 ............................................................................................................ 62 10.6.52 QOSC1D- BYTE_C7_G4 ............................................................................................................. 62 10.6.53 QOSC1E- BYTE_C2_G5 ............................................................................................................. 62 10.6.54 QOSC1F - BYTE_C3_G5............................................................................................................. 62 10.6.55 QOSC20 - BYTE_C4_G5............................................................................................................. 62 10.6.56 QOSC21 - BYTE_C5_G5............................................................................................................. 63 10.6.57 QOSC22 - BYTE_C6_G5............................................................................................................. 63 10.6.58 QOSC23 - BYTE_C7_G5............................................................................................................. 63 10.6.59 QOSC24 - BYTE_C2_G6............................................................................................................. 63 10.6.60 QOSC25 - BYTE_C3_G6............................................................................................................. 64 10.6.61 QOSC26 - BYTE_C4_G6............................................................................................................. 64 10.6.62 QOSC27 - BYTE_C5_G6............................................................................................................. 64 10.6.63 QOSC28 - BYTE_C6_G6............................................................................................................. 64
Zarlink Semiconductor Inc.
v
MVTX2803 Table of Contents
Data Sheet
10.6.64 QOSC29 - BYTE_C7_G6 .............................................................................................................64 10.6.65 QOSC2A - BYTE_C2_G7.............................................................................................................65 10.6.66 QOSC2B - BYTE_C3_G7.............................................................................................................65 10.6.67 QOSC2C - BYTE_C4_G7 ............................................................................................................65 10.6.68 QOSC2D - BYTE_C5_G7 ............................................................................................................65 10.6.69 QOSC2E - BYTE_C6_G7.............................................................................................................65 10.6.70 QOSC2F - BYTE_C7_G7.............................................................................................................66 10.6.71 QOSC33 - CREDIT_C0_G0 .........................................................................................................66 10.6.72 QOSC34 - CREDIT_C1_G0 .........................................................................................................67 10.6.73 QOSC35 - CREDIT_C2_G0 .........................................................................................................67 10.6.74 QOSC36 - CREDIT_C3_G0 .........................................................................................................67 10.6.75 QOSC37 - CREDIT_C4_G0 .........................................................................................................68 10.6.76 QOSC38 - CREDIT_C5_G0 .........................................................................................................68 10.6.77 QOSC39- CREDIT_C6_G0 ..........................................................................................................68 10.6.78 QOSC3A- CREDIT_C7_G0..........................................................................................................68 10.6.79 QOSC3B - CREDIT_C0_G1.........................................................................................................68 10.6.80 QOSC3C - CREDIT_C1_G1 ........................................................................................................69 10.6.81 QOSC3D - CREDIT_C2_G1 ........................................................................................................70 10.6.82 QOSC3E - CREDIT_C3_G1.........................................................................................................70 10.6.83 QOSC3F - CREDIT_C4_G1.........................................................................................................70 10.6.84 QOSC40 - CREDIT_C5_G1 .........................................................................................................70 10.6.85 QOSC41- CREDIT_C6_G1 ..........................................................................................................70 10.6.86 QOSC42- CREDIT_C7_G1 ..........................................................................................................70 10.6.87 QOSC43 - CREDIT_C0_G2 .........................................................................................................71 10.6.88 QOSC44 - CREDIT_C1_G2 .........................................................................................................71 10.6.89 QOSC45 - CREDIT_C2_G2 .........................................................................................................72 10.6.90 QOSC46 - CREDIT_C3_G2 .........................................................................................................72 10.6.91 QOSC47 - CREDIT_C4_G2 .........................................................................................................72 10.6.92 QOSC48 - CREDIT_C5_G2 .........................................................................................................72 10.6.93 QOSC49- CREDIT_C6_G2 ..........................................................................................................73 10.6.94 QOSC4A- CREDIT_C7_G2..........................................................................................................73 10.6.95 QOSC4B - CREDIT_C0_G3.........................................................................................................73 10.6.96 QOSC4 - CREDIT_C1_G3 ...........................................................................................................74 10.6.97 QOSC4D - CREDIT_C2_G3 ........................................................................................................74 10.6.98 QOSC4E - CREDIT_C3_G3.........................................................................................................74 10.6.99 QOSC4F - CREDIT_C4_G3.........................................................................................................75 10.6.100 QOSC50 - CREDIT_C5_G3 .......................................................................................................75 10.6.101 QOSC51- CREDIT_C6_G3 ........................................................................................................75 10.6.102 QOSC52- CREDIT_C7_G3 ........................................................................................................75 10.6.103 QOSC53 - CREDIT_C0_G4 .......................................................................................................75 10.6.104 QOSC54 - CREDIT_C1_G4 .......................................................................................................76 10.6.105 QOSC55 - CREDIT_C2_G4 .......................................................................................................77 10.6.106 QOSC56 - CREDIT_C3_G4 .......................................................................................................77 10.6.107 QOSC57 - CREDIT_C4_G4 .......................................................................................................77 10.6.108 QOSC58 - CREDIT_C5_G4 .......................................................................................................77 10.6.109 QOSC59- CREDIT_C6_G4 ........................................................................................................77 10.6.110 QOSC5A- CREDIT_C7_G4........................................................................................................77 10.7.114 QOSC5B - CREDIT_C0_G5.......................................................................................................79 10.7.115 QOSC5C - CREDIT_C1_G5 ......................................................................................................79 10.7.116 QOSC5D - CREDIT_C2_G5 ......................................................................................................80 10.7.117 QOSC5E - CREDIT_C3_G5.......................................................................................................80 10.7.118 QOSC5F - CREDIT_C4_G5.......................................................................................................80
vi
Zarlink Semiconductor Inc.
Data Sheet
MVTX2803 Table of Contents
10.7.119 QOSC60 - CREDIT_C5_G5....................................................................................................... 80 10.7.120 QOSC61- CREDIT_C6_G5........................................................................................................ 81 10.7.121 QOSC62- CREDIT_C7_G5........................................................................................................ 81 10.7.122 QOSC63 - CREDIT_C0_G6....................................................................................................... 81 10.7.123 QOSC64 - CREDIT_C1_G6....................................................................................................... 82 10.7.124 QOSC65 - CREDIT_C2_G6....................................................................................................... 82 10.7.125 QOSC66 - CREDIT_C3_G6....................................................................................................... 82 10.7.126 QOSC67 - CREDIT_C4_G6....................................................................................................... 83 10.7.127 QOSC68 - CREDIT_C5_G6....................................................................................................... 83 10.7.128 QOSC69- CREDIT_C6_G6........................................................................................................ 83 10.7.129 QOSC6A- CREDIT_C7_G6 ....................................................................................................... 83 10.7.130 QOSC6B - CREDIT_C0_G7 ...................................................................................................... 84 10.7.131 QOSC6C - CREDIT_C1_G7 ...................................................................................................... 84 10.7.132 QOSC6D - CREDIT_C2_G7 ...................................................................................................... 85 10.7.133 QOSC6E - CREDIT_C3_G7 ...................................................................................................... 85 10.7.134 QOSC6F - CREDIT_C4_G7....................................................................................................... 85 10.7.135 QOSC70 - CREDIT_C5_G7....................................................................................................... 85 10.7.136 QOSC71- CREDIT_C6_G7........................................................................................................ 86 10.7.137 QOSC72- CREDIT_C7_G7........................................................................................................ 86 10.7.138 QOSC73 - TOKEN_RATE_G0................................................................................................... 86 10.7.139 QOSC74 - TOKEN_LIMIT_G0 ................................................................................................... 86 10.7.140 QOSC75 - TOKEN_RATE_G1................................................................................................... 86 10.7.141 QOSC76 - TOKEN_LIMIT_G1 ................................................................................................... 87 10.7.142 QOSC77 - TOKEN_RATE_G2................................................................................................... 87 10.7.143 QOSC78 - TOKEN_LIMIT_G2 ................................................................................................... 87 10.7.144 QOSC79 - TOKEN_RATE_G3................................................................................................... 87 10.7.145 QOSC7A - TOKEN_LIMIT_G3................................................................................................... 88 10.7.146 QOSC7B - TOKEN_RATE_G4 .................................................................................................. 88 10.7.147 QOSC7C - TOKEN_LIMIT_G4................................................................................................... 88 10.7.148 QOSC7D - TOKEN_RATE_G5 .................................................................................................. 88 10.7.149 QOSC7E - TOKEN_LIMIT_G5................................................................................................... 89 10.7.150 QOSC7F - TOKEN_RATE_G6................................................................................................... 89 10.7.151 QOSC80 - TOKEN_LIMIT_G6 ................................................................................................... 89 10.7.152 QOSC81 - TOKEN_RATE_G7................................................................................................... 89 10.7.153 QOSC82 - TOKEN_LIMIT_G7 ................................................................................................... 90 10.7.154 RDRC0 - WRED Rate Control 0................................................................................................. 90 10.7.155 RDRC1 - WRED Rate Control 1................................................................................................. 90 10.8 Group 6 Address - MISC Group ............................................................................................................... 91 10.8.1 MII_OP0 - MII Register Option 0 .................................................................................................... 91 10.8.2 MII_OP1 - MII Register Option 1 .................................................................................................... 91 10.8.3 FEN - Feature Register .................................................................................................................. 91 10.8.4 MIIC0 - MII Command Register 0................................................................................................... 92 10.8.5 MIIC1 - MII Command Register 1................................................................................................... 92 10.8.6 MIIC2 - MII Command Register 2................................................................................................... 92 10.8.7 MIIC3 - MII Command Register 3................................................................................................... 93 10.8.8 MIID0 - MII Data Register 0............................................................................................................ 93 10.8.9 MIID1 - MII Data Register 0............................................................................................................ 93 10.8.10 LED Mode - LED Control.............................................................................................................. 93 10.8.11 CHECKSUM - EEPROM Checksum............................................................................................. 95 10.8.12 LED User....................................................................................................................................... 96 10.8.13 LEDUSER0 ................................................................................................................................... 96 10.8.14 LEDUSER1 ................................................................................................................................... 96
Zarlink Semiconductor Inc.
vii
MVTX2803 Table of Contents
Data Sheet
10.8.15 LEDUSER2/LEDSIG2 ...................................................................................................................96 10.8.16 EDUSER3/LEDSIG3 .....................................................................................................................97 10.8.17 LEDUSER4/LEDSIG4 ...................................................................................................................98 10.8.18 LEDUSER5/LEDSIG5 ...................................................................................................................98 10.8.19 LEDUSER6/LEDSIG6 ...................................................................................................................99 10.8.20 LEDUSER7/LEDSIG1_0 .............................................................................................................100 10.8.21 MIINP0 - MII Next Page Data Register 0....................................................................................101 10.8.22 MIINP1 - MII Next Page Data Register 1....................................................................................101 10.9 Group F Address - CPU Access Group ..................................................................................................101 10.9.1 GCR-Global Control Register ........................................................................................................101 10.9.2 DCR-Device Status and Signature Register .................................................................................102 10.9.3 DCR01-Giga port status ................................................................................................................102 10.9.4 DCR23-Giga port status ................................................................................................................103 10.9.5 DCR45-Giga port status ................................................................................................................103 10.9.6 DCR67-Giga port status ................................................................................................................104 10.9.7 DPST - Device Port Status Register.............................................................................................105 10.9.8 DTST - Data Read Back Register ................................................................................................105
11.0 BGA and Ball Signal Description ................................................................................ 106
11.1 BGA Views Views (Top-View).................................................................................................................106 11.2 Power and Ground Distribution...............................................................................................................107 11.3 Ball- Signal Descriptions .........................................................................................................................108 11.4 Ball Signal Name ....................................................................................................................................119 11.5 AC/DC Timing .......................................................................................................................................125 11.5.1 Absolute Maximum Ratings...........................................................................................................125 11.5.2 DC Electrical Characteristics .........................................................................................................125 11.5.3 Recommended Operation Conditions ...........................................................................................126 11.6 Local Frame Buffer ZBT SRAM Memory Interface .................................................................................126 11.6.1 Local ZBT SRAM Memory Interface A: .........................................................................................126 11.6.2 Local ZBT SRAM Memory Interface B: .........................................................................................127 11.7 Local Switch Database SBRAM Memory Interface.................................................................................128 11.7.1 Local SBRAM Memory Interface: ..................................................................................................128 11.8 AC Characteristics ..................................................................................................................................129 11.8.1 Media Independent Interface.........................................................................................................129 11.8.2 Gigabit Media Independent Interface ............................................................................................130 11.8.3 PCS Interface ................................................................................................................................131 11.8.4 LED Interface ................................................................................................................................132 11.8.5 MDIO Input Setup and Hold Timing ..............................................................................................133 11.8.6 I2C Input Setup Timing..................................................................................................................133 11.8.7 Serial Interface Setup Timing ........................................................................................................134
viii
Zarlink Semiconductor Inc.
Data Sheet
MVTX2803 List of Figures
Figure 1 - MVTX2803AG Block Diagram ................................................................................................................. 1 Figure 2 - Data Transfer Format for I2C Interface................................................................................................. 16 Figure 3 - MVTX2803AG SRAM Interface Block Diagram (DMAs for Gigabit Ports)............................................. 19 Figure 4 - Buffer Partition Scheme Used in the MVTX2803AG ............................................................................. 26 Figure 5 - Timing diagram for serial mode in LED interface................................................................................... 30 Figure 6 - Local Memory Interface - Input setup and hold timing ....................................................................... 126 Figure 7 - Local Memory Interface - Output valid delay timing............................................................................. 126 Figure 8 - Local Memory Interface - Input setup and hold timing ....................................................................... 127 Figure 9 - Local Memory Interface - Output valid delay timing............................................................................. 127 Figure 10 - Local Memory Interface - Input setup and hold timing ...................................................................... 128 Figure 11 - Local Memory Interface - Output valid delay timing.......................................................................... 128 Figure 12 - AC Characteristics - Media Independent Interface .......................................................................... 129 Figure 13 - AC Characteristics - Media Independent Interface .......................................................................... 129 Figure 14 - AC Characteristics- GMII ................................................................................................................... 130 Figure 15 - AC Characteristics - Gigabit Media Independent Interface............................................................... 130 Figure 16 - AC Characteristics - PCS Interface.................................................................................................. 131 Figure 17 - AC Characteristics - PCS Interface................................................................................................... 131 Figure 18 - AC Characteristics - LED Interface .................................................................................................. 132 Figure 19 - MDIO Input Setup and Hold Timing................................................................................................... 133 Figure 20 - MDIO Output Delay Timing................................................................................................................ 133 Figure 21 - I2C Input Setup Timing ...................................................................................................................... 133 Figure 22 - I2C Output Delay Timing.................................................................................................................... 133 Figure 23 - Serial Interface Setup Timing ............................................................................................................ 134 Figure 24 - Serial Interface Output Delay Timing................................................................................................. 134
Zarlink Semiconductor Inc.
ix
MVTX2803
Data Sheet
x
Zarlink Semiconductor Inc.
Data Sheet
MVTX2803 List of Tables
Table 1 - Two-dimensional World Traffic ...............................................................................................................22 Table 2 - Four QoS configurations per port. ..........................................................................................................23 Table 3 - WRED Dropping Scheme .......................................................................................................................25 Table 4 - Mapping between MVTX2803AG and IETF Diffserv Classes for Gigabit Ports......................................27 Table 5 - MVTX2803AG Features Enabling IETF Diffserv Standards ...................................................................28 Table 6 - AC Characteristics - Local frame buffer ZBT-SRAM Memory Interface A ...........................................127 Table 7 - Local frame buffer ZBT-SRAM Memory Interface B .............................................................................128 Table 8 - AC Characteristics - Local Switch Database SBRAM Memory Interface.............................................129 Table 9 - AC Characteristics - Media Independent Interface ..............................................................................130 Table 10 - AC Characteristics - Gigabit Media Independent Interface ................................................................131 Table 11 - AC Characteristics - PCS Interface....................................................................................................132 Table 12 - AC Characteristics - LED Interface ....................................................................................................132 Table 13 - MDIO Timing.......................................................................................................................................133 Table 14 - I2C Timing ..........................................................................................................................................134 Table 15 - Serial Interface Timing ........................................................................................................................134
Zarlink Semiconductor Inc.
xi
MVTX2803
Data Sheet
xii
Zarlink Semiconductor Inc.
Data Sheet 1.0
1.1
MVTX2803
Block Functionality
Frame Data Buffer (FDB) Interfaces
The FDB interface supports pipelined ZBT-SRAM memory at 133 MHz. To ensure a non-blocking switch, two memory domains are required. Each domain has a 64-bit wide memory bus. At 133 MHz, the aggregate memory bandwidth is 17 Gbps, which is enough to support 8 Gigabit ports at full wire speed switching. A patent pending scheme is used to access the FDB memory. Each slot has one tick to read or write 8 bytes.
1.2
Switch Database (SDB) Interface
A pipelined synchronous burst SRAM (SBRAM) memory is used to store the switch database information including MAC Table. Search Engine accesses the switch database via SDB interface. The SDB bus has 32-bit wide bus at 133MHz.
1.3
GMII/PCS MAC Module (GMAC)
The GMII/PCS Media Access Control (MAC) module provides the necessary buffers and control interface between the Frame Engine (FE) and the external physical device (PHY). The MVTX2803AG has two interfaces, GMII or PCS. The MAC of the MVTX2803AG meets the IEEE 802.3z specification and supports the MII interface. It is able to operate 10M/100M/1G in Full Duplex mode with a back pressure/flow control mechanism. It has the options to insert Source Address/CRC/VLAN ID to each frame. The GMII/PCS Module also supports hot plug detection.
1.4
Frame Engine
The main function of the frame engine is to forward a frame to its proper destination port or ports. When a frame arrives, the frame engine parses the frame header (64 bytes) and formulates a switching request which is sent to the search engine, to resolve the destination port. The arriving frame is moved to the FDB. After receiving a switch response from the search engine, the frame engine performs transmission scheduling based on the frame's priority. The frame engine forwards the frame to the MAC module when the frame is ready to be sent.
1.5
Search Engine
The Search Engine resolves the frame's destination port or ports according to the destination MAC address (L2) by searching the database. It also performs MAC learning, priority assignment, and trunking functions.
1.6
LED Interface
The LED interface can be operated in a serial mode or a parallel mode. In the serial mode, the LED interface uses 3 pins for carrying 8 port status signals. In the parallel mode, the interface can drive LEDs by 8 status pins. The LED port is shared with bootstrap pins. In order to avoid error when reading the bootstraps, a buffer must be used to isolate the LED circuitry from the bootstrap pins during bootstrap cycle (the bootstrap pins are sampled at the rising edge of the Reset).
1.7
Internal Memory
Several internal tables are required and are described as follows: * * Frame Control Block (FCB) - Each FCB entry contains the control information of the associated frame stored in the FDB, e.g. frame size, read/write pointer, transmission priority, etc. MCT Link Table - The MCT Link Table stores the linked list of MCT entries that have collisions in the external MAC Table.
2.0
System Configuration
The MVTX2803AG can be configured by EEPROM (24C02 or compatible) via an I2C interface at boot time, or via a synchronous serial interface during operation.
Zarlink Semiconductor Inc.
15
MVTX2803
2.1 I2C Interface
Data Sheet
The I2C interface uses two bus lines, a serial data line (SDA) and a serial clock line (SCL). The SCL carries the control signals that facilitate the transfer of information from the EEPROM to the switch. Data transfer is a bidirectional 8-bit serial at a rate of 50 Kbps. Data transfer is performed between master and slave IC using a request / acknowledgment style of protocol. The master IC generates the timing signals and terminates data transfer. The figure below shows the data transfer format. START SLAVE ADDRESS R/W ACK DATA 1 (8 bits) ACK DATA 2 (8 bits) ACK DATA M (8 bits) ACK STOP
Figure 2 - Data Transfer Format for I 2C Interface
2.1.1
Start Condition
Generated by the master, the MVTX2803AG. The bus is considered to be busy after the Start condition is generated. The Start condition occurs if, while the SCL line is High, there is a High-to-Low transition of the SDA. Other than in the Start condition (and Stop condition), the data on the SDA line must be stable during the High period of SCL. The High or Low state of SDA can only change when SCL is Low. In addition, when the I2C bus is free, both lines are High.
2.1.2
Address
The first byte after the Start condition determines which slave the master will select. The slave in our case is the EEPROM. The first seven bits of the first data byte make up the slave address.
2.1.3
Data Direction
The eighth bit in the first byte after the Start condition determines the direction (R/W) of the message. A master transmitter sets this bit to W; a master receiver sets this bit to R.
2.1.4
Acknowledgment
Like all clock pulses, the master generates the acknowledgment-related clock pulse. However, the transmitter releases the SDA (High) during the acknowledgment clock pulse. Furthermore, the receiver must pull down the SDA during the acknowledge pulse so that it remains stable Low during the High period of this clock pulse. An acknowledgment pulse follows every byte transfer. If a slave receiver does not acknowledge after any byte, then the master generates a Stop condition and aborts the transfer. If a master receiver does not acknowledge after any byte, then the slave transmitter must release the SDA line to let the master generate the Stop condition.
2.1.5
Data
After the first byte containing the address, all bytes that follow are data bytes. Each byte must be followed by an acknowledge bit. Data is transferred MSB-first.
2.1.6
Stop Condition
Generated by the master, the MVTX2803AG. The bus is considered to be free after the Stop condition is generated. The Stop condition occurs if while the SCL line is High, there is a Low-to-High transition of the SDA. The I2C interface serves the function of configuring the MVTX2803AG at boot time. The master is the MVTX2803AG, and the slave is the EEPROM memory.
2.2
Synchronous Serial Interface
The synchronous serial interface serves the function of configuring the MVTX2803AG not at boot time but via a PC. The PC serves as master and the MVTX2803AG serves as slave. The protocol for the synchronous serial
16
Zarlink Semiconductor Inc.
Data Sheet
MVTX2803
interface is nearly identical to the I2C protocol. The main difference is that there is no acknowledgment bit after each byte of data transferred. The unmanaged MVTX2803AG uses a synchronous serial interface to program the internal registers. To reduce the number of signals required, the register address, command and data are shifted in serially through the PS_DO pin. PS_STROBE- pin is used as the shift clock. PS_DI- pin is used as data return path. Each command consists of four parts. * START pulse * Register Address * Read or Write command * Data to be written or read back Any command can be aborted in the middle by sending an ABORT pulse to the MVTX2803AG. A START command is detected when PS_DO is sampled high at PS_STROBE - leading edge, and PS_DO is sampled low when STROBE- falls. An ABORT command is detected when PS_DO is sampled low at PS_STROBE - leading edge, and PS_DO is sampled high when PS_STROBE - falls.
2.2.1
Write Command
PS-STROBE2 extra clocks after last transfer PS_D0 A0 START A1 A2 ... A9 A10 A11 W D0 D1 D2 D3 D4 D5 D6 D7
ADDRESS
COMMAND
DATA
2.2.2
Read Command
PS-STROBE-
PS_D0
A0 START
A1
A2
...
A9 A10 A11 R COMMAND D0 D1 D2 DATA D3 D4 D5 D6 D7
ADDRESS
PS_DI
All registers in the MVTX2803AG can be modified through this synchronous serial interface.
3.0
3.1
Data Forwarding Protocol
Unicast Data Frame Forwarding
When a frame arrives, it is assigned a handle in memory by the Frame Control Buffer Manager (FCB Manager). A FCB handle will always be available, because of advance buffer reservations. The memory (ZBT-SRAM) interface is two 64-bit buses, connected to two ZBT-SRAM domains, A and B. The Receive (RxDMA) is responsible for multiplexing the data and the address. On a port's "turn," the RxDMA will
Zarlink Semiconductor Inc.
17
MVTX2803
Data Sheet
move 8 bytes (or up to the end-of-frame) from the port's associated Receive FIFO (RxFIFO) into memory (Frame Data Buffer, or FDB). Once an entire frame has been moved to the FDB, and a good end-of-frame (EOF) has been received, the Rx interface makes a switch request. The RxDMA arbitrates among multiple switch requests. The switch request consists of the first 64 bytes of a frame, containing the source and destination MAC addresses of the frame. The search engine places a switch response in the switch response queue of the frame engine when done. Among other information, the search engine will have resolved the destination port of the frame and will have determined that the frame is unicast. After processing the switch response, the Transmission Queue Manager (TxQ manager) of the frame engine is responsible for notifying the destination port that it has a frame to forward. But first, the TxQ manager has to decide whether or not to drop the frame, based on global FDB reservations and usage, as well as TxQ occupancy at the destination. If the frame is not dropped, then the TxQ manager links the frame's FCB to the correct per-port-per-class TxQ. Unicast TxQ's are linked lists of transmission jobs, represented by their associated frames' FCB's. There is one linked list for each transmission class for each port. There are 8 classes for each of the 8 Gigabit ports - a total of 32 unicast queues. The TxQ manager is responsible for scheduling transmission among the queues representing different classes for a port. When the port control module determines that there is room in the MAC Transmission FIFO (TxFIFO) for another frame, it requests the handle of a new frame from the TxQ manager. The TxQ manager chooses among the head-of-line (HOL) frames from the per-class queues for that port, using a Zarlink Semiconductor scheduling algorithm. At the transmit end, each of the 8 ports has time slots devoted solely to reading data from memory at the address calculated by port control. The Transmission DMA (TxDMA) is responsible for multiplexing the data and the address. On a port's turn, the TxDMA will move 8 bytes (or up to the EOF) from memory into the port's associated TxFIFO. After reading the EOF, the port control requests a FCB release for that frame. The TxDMA arbitrates among multiple buffer release requests. The frame is transmitted from the TxFIFO to the line.
3.2
Multicast Data Frame Forwarding
After receiving the switch response, the TxQ manager has to make the dropping decision. A global decision to drop can be made, based on global FDB utilization and reservations. If so, then the FCB is released and the frame is dropped. In addition, a selective decision to drop can be made, based on the TxQ occupancy at some subset of the multicast packet's destinations. If so, then the frame is dropped at some destinations but not others, and the FCB is not released. If the frame is not dropped at a particular destination port, then the TxQ manager formats an entry in the multicast queue for that port and class. Multicast queues are physical queues (unlike the linked lists for unicast frames). There are 4 multicast queues for each of the 8 Gigabit ports. There is one multicast queue for every two unicast classes. During scheduling, the TxQ manager treats the unicast queue and the multicast queue of the same class as one logical queue. The port control requests a FCB release only after the EOF for the multicast frame has been read by all ports to which the frame is destined.
4.0
4.1
Memory Interface
Overview
Figure 3 illustrates the first part of the ZBT-SRAM interface for the MVTX2803AG. As shown, two ZBT-SRAM banks, A and B, are used, with a 64-bit bus connected to each. Each DMA can read and write from both bank A and bank B. During each tick, two memory operations will take place in parallel - one for bank A, and one for
18
Zarlink Semiconductor Inc.
Data Sheet
MVTX2803
bank B. Because the clock frequency is 133 MHz, the total memory bandwidth is 128 bits x 133 MHz = 17 Gbps, for frame data buffer (FDB) access. In addition, the figure shows that the 8 Gigabit ports are actually grouped into sets of 4. If TxDMA 0 is using bank B during a given memory slot, then TxDMA's 1-3 will never be using bank A during this same slot. As a result, TxDMA's 0-3 can share the same bank selector.
ZBT-SRAM Bank A
ZBT-SRAM Bank B
TxDMA 0-1
TxDMA 2-3
TxDMA 4-5
TxDMA 6-7
RxDMA 0-1
RxDMA 2-3
RxDMA 4-5
RxDMA 6-7
Figure 3 - MVTX2803AG SRAM Interface Block Diagram (DMAs for Gigabit Ports)
4.2
Detailed Memory Information
Because the bus for each bank is 64 bits wide, frames are broken into 8-byte granules, written to and read from memory. The first 8-byte granule gets written to Bank A, the second 8-byte granule gets written to Bank B, and so on in alternating fashion. When reading frames from memory, the same procedure is followed, first from A, then from B, and so on. The reading and writing from alternating memory banks can be performed with minimal waste of memory bandwidth. For any speed port, in the worst case, a 1-byte-long EOF granule gets written to Bank A. This means that a 7-byte segment of Bank A bandwidth is idle, and furthermore, the next 8-byte segment of Bank B bandwidth is idle, because the first 8 bytes of the next frame will be written to Bank A, not B. This scenario results in a maximum 15 bytes of waste per frame, which is always acceptable because the interframe gap is 20 bytes. Search engine data is written to both banks in parallel. In this way, a search engine read operation could be performed by either bank at any time without a problem.
5.0
5.1
Search Engine
Search Engine Overview
The MVTX2803AG search engine is optimized for high throughput searching, with enhanced features to support: * * * Up to 64K MAC addresses 4 groups of port trunking Traffic classification into 8 transmission priorities, and 2 drop precedence levels
Zarlink Semiconductor Inc.
19
MVTX2803
5.2 Basic Flow
Data Sheet
Shortly after a frame enters the MVTX2803AG and is written to the Frame Data Buffer (FDB), the frame engine generates a Switch Request, which is sent to the search engine. The switch request consists of the first 64 bytes of the frame, which contain all the necessary information for the search engine to perform its task. When the search engine is done, it writes to the Switch Response Queue, and the frame engine uses the information provided in that queue for scheduling and forwarding. In performing its task, the search engine extracts and compresses the useful information from the 64-byte switch request. Among the information extracted are the source and destination MAC addresses, the transmission and discard priorities and whether the frame is unicast or multicast. Requests are sent to the external SRAM Switch Database to locate the associated entries in the external MCT table. When all the information has been collected from external SRAM, the search engine has to compare the MAC address on the current entry with the MAC address for which it is searching. If it is not a match, the process is repeated on the internal MCT Table. All MCT entries, other than the first of each linked list, are maintained internal to the chip. If the desired MAC address is still not found, then the result is either learning (source MAC address unknown) or flooding (destination MAC address unknown). If the destination MAC address belongs to a port trunk, then the trunk number is retrieved instead of the port number. But on which port of the trunk will the frame be transmitted? This is easily computed using a hash of the source and destination MAC addresses. When all the information is compiled, the switch response is generated, as stated earlier.
5.3 5.3.1
Search, Learning, and Aging MAC Search
The search block performs source MAC address and destination MAC address searching. As indicated earlier, if a match is not found, then the next entry in the linked list must be examined, and so on until a match is found or the end of the list is reached. In port based VLAN mode, a bitmap is used to determine whether the frame should be forwarded to the outgoing port. The bitmap is not dynamic. Ports cannot enter and exit groups dynamically. The MAC search block is also responsible for updating the source MAC address timestamp, used for aging.
5.3.2
Learning
The learning module learns new MAC addresses and performs port change operations on the MCT database. The goal of learning is to update this database as the networking environment changes over time. Learning and port change will be performed based on memory slot availability only.
5.3.3
Aging
Aging time is controlled by register 400h and 401h. The aging module scans and ages MCT entries based on a programmable "age out" time interval. As indicated earlier, the search module updates the source MAC address and VLAN port association timestamps for each frame it processes. When an entry is ready to be aged, the entry is removed from the table.
5.3.4
Data Structure
The MCT data structure is used when searching for MAC addresses. The structure is maintained by hardware in the search engine. The database is essentially a hash table, with collisions resolved by chaining. The database is partial external, and partial internal, as described earlier: the first MCT entry of each linked list is always located in the external SRAM, and the subsequent MCT's are located internally.
20
Zarlink Semiconductor Inc.
Data Sheet 6.0
6.1
MVTX2803
Frame Engine
Data Forwarding Summary
Data enters the device at the RxMAC, the RxDMA will move the data from the MAC RxFIFO to the FDB. Data is moved in 8-byte granules in conjunction with the scheme for the SRAM interface. * * * A switch request is sent to the Search Engine. The Search Engine processes the switch request. A switch response is sent back to the Frame Engine and indicates whether the frame is unicast or multicast, and its destination port or ports. A Transmission Scheduling Request is sent in the form of a signal notifying the TxQ manager. Upon receiving a Transmission Scheduling Request, the device will format an entry in the appropriate Transmission Scheduling Queue (TxSch Q) or Queues. There are 8 TxSch Queues for each Gigabit port, one for each priority. Creation of a queue entry either involves linking a new job to the appropriate linked list if unicast, or adding an entry to a physical queue if multicast. When the port is ready to accept the next frame, the TxQ manager will get the head-of-line (HOL) entry of one of the TxSch Qs, according to the transmission scheduling algorithm (so as to ensure per-class quality of service). The unicast linked list and the multicast queue for the same port-class pair are treated as one logical queue. The TxDMA will pull frame data from the memory and forward it granule-by-granule to the MAC TxFIFO of the destination port.
*
*
6.2
Frame Engine Details
This section briefly describes the functions of each of the modules of the MVTX2803AG frame engine.
6.2.1
FCB Manager
The FCB manager allocates FCB handles to incoming frames, and releases FCB handles upon frame departure. The FCB manager is also responsible for enforcing buffer reservations and limits. The default values can be determined by referring to Chapter 8. In addition, the FCB manager is responsible for buffer aging, and for linking unicast forwarding jobs to their correct TxSch Q. The buffer aging can be enabled or disabled by the bootstrap pin and the aging time is defined in register FCBAT.
6.2.2
Rx Interface
The Rx interface is mainly responsible for communicating with the RxMAC. It keeps track of the start and end of frame and frame status (good or bad). Upon receiving an end of frame that is good, the Rx interface makes a switch request.
6.2.3
RxDMA
The RxDMA arbitrates among switch requests from each Rx interface. It also buffers the first 64 bytes of each frame for use by the search engine when the switch request has been made.
6.2.4
TxQ Manager
First, the TxQ manager checks the per-class queue status and global Reserved resource situation, and using this information, makes the frame dropping decision after receiving a switch response. If the decision is not to drop, the TxQ manager requests that the FCB manager link the unicast frame's FCB to the correct per-port-perclass TxQ. If multicast, the TxQ manager writes to the multicast queue for that port and class. The TxQ manager can also trigger source port flow control for the incoming frame's source if that port is flow control enabled. Second, the TxQ manager handles transmission scheduling; it schedules transmission among the queues representing different classes for a port. Once a frame has been scheduled, the TxQ manager reads the FCB information and writes to the correct port control module.
Zarlink Semiconductor Inc.
21
MVTX2803
6.3 Port Control
Data Sheet
The port control module calculates the SRAM read address for the frame currently being transmitted. It also writes start of frame information and an end of frame flag to the MAC TxFIFO. When transmission is done, the port control module requests that the buffer be released.
6.4
TxDMA
The TxDMA multiplexes data and address from port control, and arbitrates among buffer release requests from the port control modules.
7.0
7.1
Quality of Service and Flow Control
Model
Quality of service (QoS) is an all-encompassing term for which different people have different interpretations. In this chapter, quality of service assurances means the allocation of chip resources so as to meet the latency and bandwidth requirements associated with each traffic class. There is nothing presupposed about the offered traffic pattern. If the traffic load is light, then ensuring quality of service is straightforward. But if the traffic load is heavy, the MVTX2803AG must intelligently allocate resources so as to assure quality of service for high priority data. The network manager must assign importance for the application types, such as voice, file transfer, or web browsing. The manager can then subdivide the applications into classes and set up a service contract with each. The contract may consist of bandwidth or latency assurances per class. Sometimes it may even reflect an estimate of the traffic mix offered to the switch, though this is not required. The table below shows examples of QoS applications with eight transmission priorities, including best effort traffic for which no bandwidth or latency assurances are provided. Low Drop Subclass (If class is oversubscribed, these packets are the last to be dropped) Sample application: control information Sample applications: phone calls; circuit emulation Sample application: interactive activities Sample application: web business Sample application: file backups Sample application: email Sample application: web research Sample application: training video; other multimedia Sample application: noncritical interactive activities High Drop Subclass (If class is oversubscribed, these packets are the first to be dropped)
Class
Example Assured Bandwidth (user defined) 300 Mbps
Highest transmission priorities, P7 Latency < 200 s Highest transmission priorities, P6 Latency < 200 s Middle transmission priorities, P5 Latency < 400 s Middle transmission priorities, P4 Latency < 800 s Low transmission priorities, P3 Latency < 1600 s Low transmission priorities, P2 Latency < 3200 s Best effort, P1-P0 TOTAL
200 Mbps
125 Mbps
250 Mbps
80 Mbps
45 Mbps
- 1 Gbps
Sample application: casual web browsing
Table 1 - Two-dimensional World Traffic
22 Zarlink Semiconductor Inc.
Data Sheet
MVTX2803
It is possible that a class of traffic may attempt to monopolize system resources by sending data at a rate in excess of the contractually assured bandwidth for that class. A well-behaved class offers traffic at a rate no greater than the agreed-upon rate. By contrast, a misbehaving class offers traffic that exceeds the agreed rate. A misbehaving class is formed from an aggregation of misbehaving microflows. To achieve high link utilization, a misbehaving class is allowed to use any idle bandwidth. However, the quality of service (QoS) received by well-behaved classes must never suffer. As Table 1 illustrates, each traffic class may have its own distinct properties and applications. As shown, classes may receive bandwidth assurances or latency bounds. In the example, P7, the highest transmission class, requires that all frames be transmitted within 0.2 ms, and receives 30% of the 1 Gbps of bandwidth at that port. Best-effort (P1-P0) traffic forms a lower tier of service that only receives bandwidth when none of the other classes have any traffic to offer. In addition, each transmission class has two subclasses, high-drop and low-drop. Well-behaved users should not lose packets. But poorly behaved users - users who send data at too high a rate - will encounter frame loss, and the first to be discarded will be high-drop. Of course, if this is insufficient to resolve the congestion, eventually some low-drop frames are dropped as well. Table 1 shows that different types of applications may be placed in different boxes in the traffic table. For example, web search may fit into the category of high-loss, high-latency-tolerant traffic, whereas VoIP fits into the category of low-loss, low-latency traffic.
7.2
Four QoS Configurations
There are four basic pieces to QoS scheduling in the MVTX2803AG: strict priority (SP), delay bound, weighted fair queuing (WFQ), and best effort (BE). Using these four pieces, there are four different modes of operation, as shown in Table 2.
P7 Op1 (default) Op2 Op3 Op4 Delay Bound SP SP WFQ
P6
P5
P4
P3
P2
P1 BE
P0
Delay Bound WFQ
BE
Table 2 - Four QoS configurations per port. The default configuration is six delay-bounded queues and two best-effort queues. The delay bounds per class are 0.16 ms for P7 and P6, 0.32 ms for P5, 0.64 ms for P4, 1.28 ms for P3, and 2.56 ms for P2. Best effort traffic is only served when there is no delay-bounded traffic to be served. P1 has strict priority over P0. There is a second configuration in which there are two strict priority queues, four delay bounded queues, and two best effort queues. The delay bounds per class are 0.32 ms for P5, 0.64 ms for P4, 1.28 ms for P3, and 2.56 ms for P2. If the user is to choose this configuration, it is important that P7-P6 (SP) traffic be either policed or implicitly bounded (e.g. if the incoming SP traffic is very light and predictably patterned). Strict priority traffic, if not admission-controlled at a prior stage to the MVTX2803AG, can have an adverse effect on all other classes' performance. P7 and P6 are both SP classes, and P7 has strict priority over P6. The third configuration contains two strict priority queues and six queues receiving a bandwidth partition via WFQ. As in the second configuration, strict priority traffic needs to be carefully controlled. In the fourth configuration, all queues are served using a WFQ service discipline
Zarlink Semiconductor Inc.
23
MVTX2803
7.3 Delay Bound
Data Sheet
In the absence of a sophisticated QoS server and signaling protocol, the MVTX2803AG may not be assured of the mix of incoming traffic ahead of time. To cope with this uncertainty, the delay assurance algorithm dynamically adjusts its scheduling and dropping criteria, guided by the queue occupancies and the due dates of their head-of-line (HOL) frames. As a result, latency bounds are assured for all admitted frames with high confidence, even in the presence of system-wide congestion. The algorithm identifies misbehaving classes and intelligently discards frames at no detriment to well-behaved classes. The algorithm also differentiates between high-drop and low-drop traffic with a weighted random early drop (WRED) approach. Random early dropping prevents congestion by randomly dropping a percentage of high-drop frames even before the chip's buffers are completely full, while still largely sparing low-drop frames. This allows high-drop frames to be discarded early, as a sacrifice for future low-drop frames. Finally, the delay bound algorithm also achieves bandwidth partitioning among classes.
7.4
Strict Priority and Best Effort
When strict priority is part of the scheduling algorithm, if a queue has even one frame to transmit, it goes first. Two of the four QoS configurations include strict priority queues. The goal is for strict priority classes to be used for IETF expedited forwarding (EF), where performance guarantees are required. As indicated, it is important that strict priority traffic be either policed or implicitly bounded, so as to keep from harming other traffic classes. When best effort is part of the scheduling algorithm, a queue only receives bandwidth when none of the other classes have any traffic to offer. Two of the four QoS configurations include best effort queues. The goal is for best effort classes to be used for non-essential traffic, because there are no assurances about best effort performance. However, in a typical network setting, much best effort traffic will be transmitted, and with an adequate degree of expediency. Because there is not any delay assurances for best effort traffic, enforcement of latency by dropping best effort traffic is not provided. Furthermore, because it is assumed that strict priority traffic is carefully controlled before entering the MVTX2803AG, a fair bandwidth partition by dropping strict priority traffic is not enforced. To summarize, dropping to enforce quality of service (i.e. bandwidth or delay) does not apply to strict priority or best effort queues. It only drops frames from best effort and strict priority queues when global buffer resources become scarce.
7.5
Weighted Fair Queuing
In some environments - for example, in an environment in which delay assurances are not required, but precise bandwidth partitioning on small time scales is essential - WFQ may be preferable to a delay-bounded scheduling discipline. The MVTX2803AG provides the user with a WFQ option with the understanding that delay assurances cannot be provided if the incoming traffic pattern is uncontrolled. The user sets eight WFQ "weights" such that all weights are whole numbers and sum to 64. This provides per-class bandwidth partitioning with error within 2%. In WFQ mode, though frame latency is not assured, the MVTX2803AG still retains a set of dropping rules that helps to prevent congestion and trigger higher level protocol end-to-end flow control. As before, when strict priority is combined with WFQ, there are no special dropping rules for the strict priority queues, because the input traffic pattern is assumed to be carefully controlled at a prior stage. However, there is indeed drop frames from SP queues for global buffer management purposes. In addition, queues P1 and P0 are treated as best effort from a dropping perspective, though they still are assured a percentage of bandwidth from a WFQ scheduling perspective. What this means is that these particular queues are only affected by dropping when the global buffer count becomes low.
7.6
Shaper
Although traffic shaping is not a primary function of the MVTX2803AG, the chip does implement a shaper for expedited forwarding (EF). The goal in shaping is to control the peak and average rate of traffic exiting the MVTX2803AG. Shaping is limited to class P6 (the second highest priority). This means that class P6 will be the class used for EF traffic. (By contrast, assume class P7 will be used for control packets only.) If shaping is
24
Zarlink Semiconductor Inc.
Data Sheet
MVTX2803
enabled for P6, then P6 traffic must be scheduled using strict priority. With reference to Table 4, only the middle two QoS configurations may be used. Peak rate is set using a programmable whole number, no greater than 64 (register QOS-CREDIT_C6_Gn). For example, if the setting is 32, then the peak rate for shaped traffic is 32/64 x 1000 Mbps = 500 Mbps. Average rate is also a programmable whole number, no greater than 64, and no greater than the peak rate. For example, if the setting is 16, then the average rate for shaped traffic is 16/64 x 1000 Mbps = 250 Mbps. As a consequence of the above settings in the example, shaped traffic will exit the MVTX2803AG at a rate always less than 500 Mbps, and averaging no greater than 250 Mbps. Also, when shaping is enabled, it is possible for a P6 queue to explode in length if fed by a greedy source. The reason is that a shaper is by definition not work-conserving; that is, it may hold back from sending a packet even if the line is idle. Though there is global resource management, nothing is done to prevent this situation locally. This assumes SP traffic is policed at a prior stage to the MVTX2803AG.
7.7
WRED Drop Threshold Management Support
To avoid congestion, the Weighted Random Early Detection (WRED) logic drops packets according to specified parameters. The following table summarizes the behavior of the WRED logic. P7 Level 1 N 240 Level 2 N 280 Level 3 N 320 |P7| A KB P6 |P6| B KB P5 |P5| C KB P4 |P4| D KB P3 |P3| E KB P2 |P2| F KB High Drop X% Y% 100% Low Drop 0% Z% 100%
Table 3 - WRED Dropping Scheme In the table, |Px| is the byte count in queue Px. The WRED logic has three drop levels, depending on the value of N, which is based on the number of bytes in the priority queues. If delay bound scheduling is used, N equals 16|P7| + 16|P6| + 8|P5| + 4|P4| + 2|P3| + |P2|. If WFQ scheduling is used, N equals |P7| + |P6| + |P5| + |P4| + |P3| + |P2|. Each drop level has defined high-drop and low-drop percentages, which indicate the percentage of high-drop and low-drop packets that will be dropped at that level. The X, Y, and Z percent parameters can be programmed using the registers RDRC0 and RDRC1. Parameters A-F are the byte count thresholds for each priority queue, and are also programmable. When using delay bound scheduling, the values selected for A-F also control the approximate bandwidth partition among the traffic classes; see application note.
7.8
Buffer Management
Because the number of frame data buffer (FDB) slots is a scarce resource, and because it is desirable to ensure that one misbehaving source port or class cannot harm the performance of a well-behaved source port or class, the concept of buffer management was produced into the MVTX2803AG. The buffer management scheme is designed to divide the total buffer space into numerous reserved regions and one shared pool, (see Figure 4). As shown in the figure, the FDB pool is divided into several parts. A reserved region for temporary frames stores frames prior to receiving a switch response. Such a temporary region is necessary, because when the frame first enters the MVTX2803AG, its destination port and class are as yet unknown, and so the decision to drop or not needs to be temporarily postponed. This ensures that every frame can be received first before subjecting it to the frame drop discipline after classifying. Six reserved sections, one for each of the highest six priority classes, ensure a programmable number of FDB slots per class. The lowest two classes do not receive any buffer reservation. Another segment of the FDB reserves space for each of the 8 ports. These source port buffer reservations are programmable. These 8 reserved regions make sure that no well-behaved source port can be blocked by another misbehaving source port.
Zarlink Semiconductor Inc.
25
MVTX2803
Data Sheet
In addition, there is a shared pool, which can store any type of frame. The registers related to the Buffer Management logic are: * * * * * * * * PRG- Port Reservation for Gigabit Ports SFCB- Share FCB Size C2RS- Class 2 Reserved Size C3RS- Class 3 Reserved Size C4RS- Class 4 Reserved Size C5RS- Class 5 Reserved Size C6RS- Class 6 Reserved Size C7RS- Class 7 Reserved Size
Temporary Reservation RTMP
Per-Class Reservations RP7, RP6,...RP2
Shared Pool S
Per-Source Reservations 8-R1G
Figure 4 - Buffer Partition Scheme Used in the MVTX2803AG
7.8.1
Dropping When Buffers Are Scarce
Summarizing the two examples of local dropping discussed earlier in this chapter: If a queue is a delay-bounded queue, we have a multilevel WRED drop scheme, designed to control delay and partition bandwidth in case of congestion. * If a queue is a WFQ-scheduled queue, we have a multilevel WRED drop scheme, designed to prevent congestion. In addition to these reasons for dropping, the MVTX2803AG also drops frames when global buffer space becomes scarce. The function of buffer management is to ensure that such droppings cause as little blocking as possible. *
7.9
MVTX2803AG Flow Control Basics
Because frame loss is unacceptable for some applications, the MVTX2803AG provides a flow control option. When flow control is enabled, scarcity of buffer space in the switch may trigger a flow control signal; this signal tells a source port, sending a packet to this switch, to temporarily hold off. While flow control offers the clear benefit of no packet loss, it also introduces a problem for quality of service. When a source port receives an Ethernet flow control signal, all microflows originating at that port, well-behaved
26
Zarlink Semiconductor Inc.
Data Sheet
MVTX2803
or not, are halted. A single packet destined for a congested output can block other packets destined for uncongested outputs. The resulting head-of-line blocking phenomenon means that quality of service cannot be assured with high confidence when flow control is enabled. In the MVTX2803AG, each source port can independently have flow control enabled or disabled. For flow control enabled ports, by default all frames are treated as lowest priority during transmission scheduling. This is done so that those frames are not exposed to the WRED Dropping scheme. Frames from flow control enabled ports feed to only one queue at the destination, the queue of lowest priority. What this means is that if flow control is enabled for a given source port, then it can guarantee that no packets originating from that port will be lost, but at the possible expense of minimum bandwidth or maximum delay assurances. In addition, these "downgraded" frames may only use the shared pool or the per-source reserved pool in the FDB; frames from flow control enabled sources may not use reserved FDB slots for the highest six classes (P2-P7). The MVTX2803AG does provide a system-wide option of permitting normal QoS scheduling (and buffer use) for frames originating from flow control enabled ports. When this programmable option is active, it is possible that some packets may be dropped, even though flow control is on. The reason is that intelligent packet dropping is a major component of the MVTX2803AG's approach to ensuring bounded delay and minimum bandwidth for high priority flows.
7.9.1
Unicast Flow Control
For unicast frames, flow control is triggered by source port resource availability. Recall that the MVTX2803AG's buffer management scheme allocates a reserved number of FDB slots for each source port. If a programmed number of a source port's reserved FDB slots have been used, then flow control Xoff is triggered. Xon is triggered when a port is currently being flow controlled, and all of that port's reserved FDB slots have been released. Note that the MVTX2803AG's per-source-port FDB reservations assure that a source port that sends a single frame to a congested destination will not be flow controlled.
7.9.2
Multicast Flow Control
When port based Vlan is not used, a global buffer counter (64 packets) triggers flow control for multicast frames. When the system exceeds a programmable threshold of multicast packets, Xoff is triggered. Xon is triggered when the system returns below this threshold. MCC register programs the threshold. When port based Vlan is used, each Vlan has a global buffer counter. In addition, each source port has an 8-bit port map recording which port or ports of the multicast frame's fanout were congested at the time Xoff was triggered. All ports are continuously monitored for congestion, and a port is identified as uncongested when its queue occupancy falls below a fixed threshold. When all those ports that were originally marked as congested in the port map have become uncongested, then Xon is triggered, and the 8-bit vector is reset to zero. The MVTX2803AG also provides the option of disabling VLAN multicast flow control. Note: If port flow control is on, QoS performance will be affected. To determine the most efficient way to program, please refer to the QoS Application Note.
7.10
Mapping to IETF Diffserv Classes
The mapping between priority classes discussed in this chapter and elsewhere is shown below. MVTX2803AG IETF P7 NM P6 EF P5 AF0 P4 AF1 P3 AF2 P2 AF3 P1 BE0 P0 BE1
Table 4 - Mapping between MVTX2803AG and IETF Diffserv Classes for Gigabit Ports
Zarlink Semiconductor Inc.
27
MVTX2803
Data Sheet
As the table illustrates, P7 is used solely for network management (NM) frames. P6 is used for expedited forwarding service (EF). Classes P2 through P5 correspond to an assured forwarding (AF) group of size 4. Finally, P0 and P1 are two best effort (BE) classes. Features of the MVTX2803AG that correspond to the requirements of their associated IETF classes are summarized in the following below. Network Management (NM) and Expedited Forwarding (EF) * * * * * * * * * Best Effort (BE) * * * * Global buffer reservation for NM and EF Shaper for EF traffic Option of strict priority scheduling No dropping if admission controlled Four AF classes Programmable bandwidth partition, with option of WFQ service Option of delay-bounded service keeps delay under fixed levels even if not admission-controlled Random early discard, with programmable levels Global buffer reservation for each AF class Two BE classes Service only when other queues are idle means that QoS not adversely affected Random early discard, with programmable levels Traffic from flow control enabled ports automatically classified as BE
Assured Forwarding (AF)
Table 5 - MVTX2803AG Features Enabling IETF Diffserv Standards
8.0
8.1
Port Trunking
Features and Restrictions
A port group (i.e. trunk) can include up to 8 physical ports, but all of the ports in a group must be in the same MVTX2803AG. The MVTX2803AG provides several pre-assigned trunk group options, containing as many as 4 ports per group, or alternatively, as many as 4 total groups. Load distribution among the ports in a trunk for unicast is performed using hashing based on source MAC address and destination MAC address. The other options include source MAC address only, destination MAC address only. Load distribution for multicast is performed similarly. If a VLAN includes any of the ports in a trunk group, all the ports in that trunk group should be in the same VLAN member map. The MVTX2803AG also provides a safe fail-over mode for port trunking automatically. If one of the ports in the trunking group goes down, the MVTX2803AG will automatically redistribute the traffic over to the remaining ports in the trunk in unmanaged mode. In managed mode, the software can perform similar tasks.
8.2
Unicast Packet Forwarding
The search engine finds the destination MCT entry, and if the status field says that the destination address found belongs to a trunk, then the group number is retrieved instead of the port number. In addition, if the source address belongs to a trunk, then the source port's trunk membership register is checked to determine if the address has moved. A hash key is used to determine the appropriate forwarding port, based on some combination of the source and destination MAC addresses for the current packet. The search engine retrieves the VLAN member ports from the VLAN index table, which consists of 4K entries.
28
Zarlink Semiconductor Inc.
Data Sheet
MVTX2803
The search engine retrieves the VLAN member ports from the ingress port's VLAN map. Based on the destination MAC address, the search engine determines the egress port from the MCT database. If the egress port is a member of a trunk group, the packet can be distributed to the other members of that trunk group. The VLAN map is used to check whether the egress port is a member of the VLAN, based on the ingress port. If it is a member, the packet is forwarded otherwise it is discarded.
8.3
Multicast Packet Forwarding
For multicast packet forwarding, the device must determine the proper set of ports from which to transmit the packet based on the VLAN index and hash key. Two functions are required in order to distribute multicast packets to the appropriate destination ports in a port trunking environment. * * Determining one forwarding port per group. For multicast packets, all but one port per group, the forwarding port, must be excluded.
8.4
Preventing Multicast Packets from Looping Back to the Source Trunk
The search engine needs to prevent a multicast packet from sending to a port that is in the same trunk group with the source port. This is because, when selecting the primary forwarding port for each group, it does not take the source port into account. To prevent this, simply apply one additional filter, so as to block that forwarding port for this multicast packet.
9.0
9.1
LED Interface
Introduction
The MVTX2803AG LED block provides two interfaces: a serial output channel, and a parallel time-division interface. The serial output channel provides port status information from the MVTX2803AG chip in a continuous serial stream. This means that a low cost external device must be used to decode the serial data and to drive an LED array for display. By contrast, the parallel time-division interface supports a glueless LED module. Indeed, the parallel interface can directly drive low-current LEDs without any extra logic. The pin LED_PM is used to select serial or parallel mode. For some LED signals, the interface also provides a blinking option. Blinking may be enabled for LED signals TxD, RxD, COL, and FC (to be described later). The pin LED_BLINK is used to enable blinking, and the blinking frequency is around 160 ms.
9.2
Serial Mode
In serial mode, the following pins are utilized: * LED_SYNCO - a sync pulse that defines the boundary between status frames * LED_CLKO - the clock signal * LED_DO - a continuous serial stream of data for all status LEDs that repeats once every frame time In each cycle (one frame of status information, or one sync pulse), 16x8 bits of data are transmitted on the LED_DO signal. The sequence of transmission of data bits is as shown in the figure below:
Zarlink Semiconductor Inc.
29
MVTX2803
LE_SYNCO
Data Sheet
LE_DO
P0 info
P1 info
P2 info
P3 info
P4 info
P5 info
P6 info
P7 info
U0
U1
U2
U3
U4
U5
U6
U7
LE_CLKO
0
FC
1
TxD
2
RxD
3
LNK
4
SP0
5
SP1
6
FDX
7
COL
Figure 5 - Timing diagram for serial mode in LED interface The status bits shown in here are flow control (FC), transmitting data (TxD), receiving data (RxD), link up (LNK), speed (SP0 and SP1), full duplex (FDX), and collision (COL). Note that SP[1:0] is defined as 10 for 1 Gbps, 01 for 100 Mbps, and 00 for 10 Mbps. Also note that U0-U7 represent user-defined sub-frames in which additional status information may be embedded. We will see later that the MVTX2803AG provides registers that can be written by the CPU to indicate this additional status information as it becomes available.
9.3
Parallel Mode
In parallel mode, the following pins are utilized: LED_PORT_SEL[9:0] - indicates which of the 8 Gigabit port status bytes or 2 user-defined status bytes is being read out * LED_BYTEOUT_[7:0] - provides 8 bits for 8 different port status indicators. Note that these bits are active low. By default, the system is in parallel mode. In parallel mode, the 10 status bytes are scanned in a continuous loop, with one byte read out per clock cycle, and the appropriate port select bit asserted. *
9.4
LED Control Registers
An LED Control Register can be used for programming the LED clock rate, sample hold time, and pattern in parallel mode. In addition, the MVTX2803AG provides 8 registers called LEDUSER[7:0] for user-defined status bytes. During operation, the CPU can write values to these registers, which will be read out to the LED interface output (serial or parallel). Only LEDUSER[1:0] are used in parallel mode. The content of the LEDUSER registers will be sent out by the LED serial shift logic, or in parallel mode, a byte at a time. Because in parallel mode there are only two user-defined registers, LEDUSER[7:2] is shared with LEDSIG[7:2]. For LEDSIG[j], where j = 2, 3, ..., 6, the corresponding register is used for programming the LED pin LED_BYTEOUT_[j]. The format is as follows:
7
4 FDX SP1 SP0
3 COL FDX SP1
0 SP0
COL
Bits [3:0]
Signal polarity: 0: do not invert polarity (high true) 1: invert polarity
Bits [7:4]
Signal select:
0: do not select
1: select the corresponding bit
30
Zarlink Semiconductor Inc.
Data Sheet
MVTX2803
For j = 2, 3, 4, 5, the value of LED_BYTEOUT_[j] equals the logical AND of all selected bits. For j = 6, the value is equal to the logical OR. Therefore, the programmable LEDSIG[5:2] registers allow any conjunctive formula including any of the 4 status bits (COL, FDX, SP1, SP0) or their negations to be sent to the LED_BYTEOUT_[5:2] pins. Similarly, the programmable LEDSIG[6] register allows any disjunctive formula including any of the 4 status bits or their negations to be sent to pin LED_BYTEOUT_[6]. LEDSIG[7] is used for programming both LED_BYTEOUT_[1] and LED_BYTEOUT_[0]. As we will see, it has other functions as well. The format is as follows:
7
4 RxD TxD FC
3 P6 RxD TxD
0 FC
GP
Bits [7]
*
Global output polarity: this bit controls the output polarity of all LED_BYTEOUT_ and LED_PORT_SEL pins. (Default 0) 0: do not invert polarity (LED_BYTEOUT_[7:0] are high activated; LED_PORT_SEL[9:0] are low activated) 1: invert polarity (LED_BYTEOUT_[7:0] are low activated; LED_PORT_SEL[9:0] are high activated)
Bits [6:4]
*
Signal select: 0: do not select 1: select the corresponding bit
* Bit [3] *
The value of LED_BYTEOUT_[1] equals the logical OR of all selected bits. (Default 110) Polarity control of LED_BYTEOUT_[6] (Default 0) 0: do not invert 1: invert
Bits [2:0]
*
Signal select: 0: do not select 1: select the corresponding bit
*
The value of LED_BYTEOUT_[0] equals the logical OR of all selected bits. (Default 001)
10.0
10.1
Register Definition
MVTX2803AG Register Description CPU Addr (Hex) I2C Addr (Hex)
Register
Description
R/W
Default
Notes
ETHERNET Port Control Registers - Substitute [N] with Port number (0..7) ECR1P"N" Port Control Register 1 for Port N (N=0-7) 000 + 2N R/W 000+2N c0
Zarlink Semiconductor Inc.
31
MVTX2803
CPU Addr (Hex) 001 + 2N 012 013 014 015 016 I 2C Addr (Hex) 001+2N N/A N/A N/A N/A N/A
Data Sheet
Register ECR2P"N" GGCONTROL0 GGCONTROL1 GGCONTROL2 GGCONTROL3 ACTIVELINK
Description Port Control Register 2 for Port N (N=0-7) Extra Gigabit Port Control - port 0,1 Extra Gigabit Port Control - port 2,3 Extra Gigabit Port Control - port 4,5 Extra Gigabit Port Control - port 6,7 Active Link status port 7:0
R/W R/W R/W R/W R/W R/W R/W
Default 00 00 00 00 00 00
Notes
VLAN Control Registers - Substitute [N] with Port number (0..8) AVTCL AVTCH PVMAP"N"_0 PVMAP"N"_3 PVMODE TRUNK Control Registers TRUNK0_MODE TRUNK1_MODE CPU Port Configuration TX_AGE Transmission Queue Aging Time 312 R/W 03B 08 Trunk Group 0 Mode Trunk Group 1 Mode 207 20E R/W R/W 039 03A 00 00 VLAN Type Code Register Low VLAN Type Code Register High Port "N" Configuration Register 0 (N=0-8) Port "N" Configuration Register 3 (N=0-8) VLAN Operating Mode 100 101 102 + 4N 105 + 4N 126 R/W R/W R/W R/W R/W 012 013 014+4N 017+4N 038 00 81 ff 00 00
Search Engine Configurations AGETIME_LOW AGETIME_HIGH SE_OPMODE MAC Address Aging Time Low MAC Address Aging Time High Search Engine operation mode 400 401 403 R/W R/W R/W 03C 03D NA 2c 00 00
Buffer Control and QOS Control FCBAT QOSC FCB Aging Timer QOS Control 500 501 R/W R/W 03E 03F ff 00
32
Zarlink Semiconductor Inc.
Data Sheet
CPU Addr (Hex) 502 503 504 505 506 507 508 509 50A 50B 50C 50D 50E 50F 510 511 512 513 514 515 516 517-546 547-599 59A 59B I2C Addr (Hex) 040 041 042 043 044 045 046 047 048 049 04A 04B 04C 04D 04E 04F 050 051 052 053 054 055-084 NA 085 086
MVTX2803
Description Flooding Control Register VLAN Priority Map Low VLAN Priority Map Middle VLAN Priority Map High TOS Priority Map Low TOS Priority Map Middle TOS Priority Map High VLAN Discard Map TOS Discard Map Broadcast/Multicast Rate Control Unicast Congestion Control Multicast Congestion Control Port Reservation for 10/100 Ports Port Reservation for Giga Ports Share FCB Size Class 2 Reserved Size Class 3 Reserved Size Class 4 Reserved Size Class 5 Reserved Size Class 6 Reserved Size Class 7 Reserved Size QOS Control (N=0 - 2F) QOS Control (N=30 - 82) WRED Rate Control 0 WRED Rate Control 1 R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W Default 08 88 c6 fa 88 c6 fa 00 00 00 07 48 00 26 37 00 00 00 00 00 00 Notes
Register FCR AVPML AVPMM AVPMH TOSPML TOSPMM TOSPMH AVDM TOSDML BMRC UCC MCC PR100 PRG SFCB C2RS C3RS C4RS C5RS C6RS C7RS QOSC"N" QOSC"N" RDRC0 RDRC1
8e 68
MISC Configuration Registers MII_OP0 MII_OP1 FEN MIIC0 MII Register Option 0 MII Register Option 1 Feature Registers MII Command Register 0 600 601 602 603 R/W R/W R/W R/W 0B1 0B2 0B3 N/A 00 00 10 00
Zarlink Semiconductor Inc.
33
MVTX2803
CPU Addr (Hex) 604 605 606 607 608 609 60B 60C 60D 60E 60F 610 611 612 613 614 615 I 2C Addr (Hex) N/A N/A N/A N/A N/A 0B4 0C5 0BB 0BC 0BD 0BE 0BF 0C0 0C1 0C2 0C3 0C4
Data Sheet
Register MIIC1 MIIC2 MIIC3 MIID0
MIID1
Description MII Command Register 1 MII Command Register 2 MII Command Register 3 MII Data Register 0 MII Data Register 1 LED Control Register EEPROM Checksum Register LED User Define Register 0 LED User Define Register 1 LED User Define Reg. 2/LED_byte pin 2 LED User Define Reg. 3/LED_byte pin 3 LED User Define Reg. 4/LED_byte pin 4 LED User Define Reg. 5/LED_byte pin 5 LED User Define Reg. 6/LED_byte pin 6 LED User Define Reg. 7/LED_byte pin 1 & 0 MII NEXT PAGE DATA REGISTER0 MII NEXT PAGE DATA REGISTER1
R/W R/W R/W R/W RO RO R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W
Default 00 00 00 00 00 38 00 00 00 80 33 32 20 40 61 00 00
Notes
LED CHECKSUM LEDUSER0 LEDUSER1 LEDUSER2 LEDUSER3 LEDUSER4 LEDUSER5 LEDUSER6 LEDUSER7 MIINP0 MIINP1 Test Group Control DTSRL DTSRM DTSRH TDRB0 TDRB1 DTCR MASK0 MASK1
Test Register Low Test Register Medium Test Register High TEST MUX read back register [7:0] TEST MUX read back register [15:8] Test Counter Register MASK Timeout 0 MASK Timeout 1
E00 E01 E02 E03 E04 E05 E06 E07
R/W R/W R/W RO RO R/W R/W R/W
N/A N/A N/A N/A N/A N/A 0B6 0B7
00 01 00
00 00 00
34
Zarlink Semiconductor Inc.
Data Sheet
CPU Addr (Hex) E08 E09 E0A I2C Addr (Hex) 0B8 0B9 0BA
MVTX2803
Description MASK Timeout 2 MASK Timeout 3 MASK Timeout 4 R/W R/W R/W R/W Default 00 00 00 Notes
Register MASK2 MASK3 MASK4
Device Configuration Register GCR DCR DCR01 DCR23 DCR45 DCR67 DPST DTST PLLCR LCLKCR BCLKCR BSTRRB0 BSTRRB1 BSTRRB2 BSTRRB3 BSTRRB4 BSTRRB5 DA
Note: Note: Note: Note: Note: 1. 2. 3. 4. 5.
Global Control Register Device Status and Signature Register Gigabit Port0 Port1 Status Register Gigabit Port2 Port3 Status Register Gigabit Port4 Port5 Status Register Gigabit Port6 Port7 Status Register Device Port Status Register Data read back register PLL Control Register LCLK Control Register BCLK Control Register BOOT STRAP read back register 0 BOOT STRAP read back register 1 BOOT STRAP read back register 2 BOOT STRAP read back register 3 BOOT STRAP read back register 4 BOOT STRAP read back register 5 DA Register
se = Search Engine fe = Frame Engine pgs = Port Group01, 23, 45, and 67 mc = MAC Control tm = time
F00 F01 F02 F03 F04 F05 F06 F07 F08 F09 F0A F0B F0C F0D F0E F0F F10 FFF
R/W RO RO RO RO RO R/W RO R/W R/W R/W RO RO RO RO RO RO RO
N/A N/A NA NA NA NA N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
00
00
00 00 00
da
Zarlink Semiconductor Inc.
35
MVTX2803
10.2 10.2.1 Group 0 Address - MAC Ports Group ECR1Pn: Port N Control Register
Data Sheet
I2C Address h00+2n; Serial Interface Address:h000+2n (n=0 to 7) Accessed by serial interface and I2C (R/W) 7 6 5 A-FC 4 3 2 1 0
Sp State
Port Mode
Bit [4:0] Bit [4:3]
*
Port Mode (Default 2'b00) 00 - Automatic Enable Auto-Negotiation - This enables hardware state machine for auto-negotiation. 01 - Limited Disable auto-Negotiation - This disables hardware for speed auto-negotiation. Hardware Polls MII for link status. 10 - Link Down - Force link down (disable the port). Does not talk to PHY. 11 - Link Up - Does not talk to PHY. User ERC1 [2:0] for config.
Bit [2]
1 - 10Mbps (Default 1'b0) 0 - 100Mbps Bit 2 is used only when the port is in MII (10/100) mode.
Bit [1]
1 - Half Duplex (Do not use) (Default 1'b0) 0 - Full Duplex
36
Zarlink Semiconductor Inc.
Data Sheet
Bit [0] 1 - Flow Control Off (Default 1'b0) 0 - Flow Control On
MVTX2803
* *
When flow control is on: In full duplex mode, the MAC transmitter sends Flow Control Frames when necessary. The MAC receiver interprets and processes incomming flow control frames. The Flow Control Frame Received counter is incremented whenever a flow control frame is received. When flow control is off: In full duplex mode, the MAC transmitter does not send flow control frames. The MAC receiver does not interpret or process the flow control frames. The Flow Control Frame Receiver counter is not incremented. Asymmetric Flow Control Enable. 0 - Disable asymmetric flow control 1 - Enable asymmetric flow control
* *
Bit [5]
*
*
When this bit is set, and flow control is on (bit[0] = 0), don't send out a flow control frame. But MAC Receiver interprets and process flow control frames. (Default is 0) SS - Spanning tree state (802.1D spanning tree protocol). (Default 2'b11) 00 - Blocking: Frame is dropped 01 - Listening: 10 - Learning: 11 - Forwarding: Frame is dropped Frame is dropped. Source MAC address is learned. Frame is forwarded. Source MAC address is learned.
Bit [7:6]
*
Zarlink Semiconductor Inc.
37
MVTX2803
Data Sheet
38
Zarlink Semiconductor Inc.
Data Sheet
10.2.2 ECR2Pn: Port N Control Register
MVTX2803
I2C Address: 01+2n; Serial Interface Address:h001+2n (n=0to7) Accessed by serial interface (R/W) 7 Security En
5
3
2
DisL
1
Ftf
0 Futf
Bit[0]:
*
Filter untagged frame (Default 0) 0: Disable 1: Enable - All untagged frames from this port are discarded or follow security option when security is enable
Bit[1]:
*
Filter Tag frame (Default 0) 0: Disable 1: Enable - All tagged frames from this port are discarded or follow security option when security is enable
Bit[2]:
*
Learning Disable (Default 0) 0: Learning is enabled on this port 1: Learning is disabled on this port
Bit [5:3:] Bit[7:6]
* * *
Reserved Security Enable (Default 00). The MVTX2804AG checks the incoming data for one of the following conditions: If the source MAC address of the incoming packet is in the MAC table and is defined as secure address but the ingress port is not the same as the port associated with the MAC address in the MAC table. A MAC address is defined as secure when its entry at MAC table has static status and bit 0 is set to 1. MAC address bit 0 (the first bit transmitted) indicates whether the address is unicast or multicast. As source addresses are always unicast bit 0 is not used (always 0). MVTX2804 uses this bit to define secure MAC addresses. If the port is set as learning disable and the source MAC address of the incoming packet is not defined in the MAC address table. If the port is configured to filter untagged frames and an untagged frame arrives or if the port is configured to filter tagged frames and a tagged frame arrives. If one of these three conditions occurs, the packet will be handled according to one of the following specified options: 00 - Disable port security 01 - Enable port security. Port will be disabled when security violation is detected 10 - N/A 11 - N/A
*
* *
*
Zarlink Semiconductor Inc.
39
MVTX2803
10.2.3 GGControl 0- Extra GIGA Port Control
Data Sheet
Serial Interface Address:h012 Accessed by and serial interface (R/W) 7
6
5 MII1
4 Rst1
4
2
1 MII0 Rst0
0
Bit[0]:
*
Reset GIGA port 0 (Default is 0) 0: Normal operation 1: Reset Gigabit port 0.
Bit[1]:
*
GIGA port 0 use MII interface (10/100M) (Default is 0) 0: Gigabit port operation at 1000M mode 1: Gigabit port operation at 10/100M mode (MII)
Bit[3:2]: Bit[4]:
* *
Reserved -Must be '0' (Default 0) Reset GIGA port 1 (Default 0) 0: Normal operation 1: Reset Gigabit port 1.
Bit[5]:
*
GIGA port 1 use MII interface (10/100M) (Default 0) 0: Gigabit port operation at 1000M mode 1: Gigabit port operation at 10/100M mode (MII)
Bit[7:6]:
*
Reserved - Must be '0' (Default 0)
10.2.4
GGControl 1- Extra GIGA Port Control
Serial Interface Address:h013 Accessed by CPU and serial interface (R/W) 7
6
5 MII3
4 Rst3
3
2
1 MII2
0 Rst2
Bit[0]:
*
Reset GIGA port 2 Default is 0 0: Normal operation 1: Reset Gigabit port 2
Bit[1]:
*
GIGA port 2 use MII interface (10/100M) Default is 0 0: Gigabit port operation at 1000M mode 1: Gigabit port operation at 10/100M mode (MII)
Bit[3:2]:
*
Reserved - Must be '0' (Default '0')
40
Zarlink Semiconductor Inc.
Data Sheet
Bit[4]: * Reset GIGA port 3 Default is 0 0: Normal operation 1: Reset Gigabit port 3. Bit[5]: * GIGA port 3 use MII interface (10/100M) Default is 0 0: Gigabit port operation at 1000M mode 1: Gigabit port operation at 10/100M mode (MII) Bit[7:6]: * Reserved - Must be '0' (Default '0')
MVTX2803
10.2.5
GGControl 2- Extra GIGA Port Control
Serial Interface Address:h014 Accessed by CPU and serial interface (R/W) 7
6
5 MII5
4 Rst5
3
2
1 MII4 Rst4
0
Bit[0]:
*
Reset GIGA port 4 Default is 0 0: Normal operation 1: Reset Gigabit port 4.
Bit[1]:
*
GIGA port 4 use MII interface (10/100M) Default is 0 0: Gigabit port operation at 1000M mode 1: Gigabit port operation at 10/100M mode (MII)
Bit[3:2]: Bit[4]:
* *
Reserved - Must be '0' (Default 0) Reset GIGA port 5 Default is 0 0: Normal operation 1: Reset Gigabit port 5.
Bit[5]:
*
GIGA port 5 use MII interface (10/100M) Default is 0 0: Gigabit port operation at 1000M mode 1: Gigabit port operation at 10/100M mode (MII)
Bit[7:6]:
*
Reserved - Must be '0' (Default 0)
Zarlink Semiconductor Inc.
41
MVTX2803
10.2.6 GGControl 3- Extra GIGA Port Control
Data Sheet
Serial Interface Address:h015 Accessed by CPU and serial interface (R/W) 7
6
5 MII7
4 Rst7
3
2
1 MII6 Rst6
0
Bit[0]:
*
Reset GIGA port 6 Default is 0 0: Normal operation 1: Reset Gigabit port 6.
Bit[1]:
*
GIGA port 6 use MII interface (10/100M) Default is 0 0: Gigabit port operation at 1000M mode 1: Gigabit port operation at 10/100M mode (MII)
Bit[3:2]: Bit[4]:
* *
Reserved - Must be '0' (Default 0) Reset GIGA port 7 Default is 0 0: Normal operation 1: Reset Gigabit port 7.
Bit[5]:
*
GIGA port 7 use MII interface (10/100M) Default is 0 0: Gigabit port operation at 1000M mode 1: Gigabit port operation at 10/100M mode (MII)
Bit[7:6]:
*
Reserved - Must be '0' (Default 0)
10.3 10.3.1
Group 1 Address - VLAN Group AVTCL - VLAN Type Code Register Low
I2C Address h12; Serial Interface Address:h100 Accessed by serial interface and I2C (R/W) Bit[7:0]: VLANType_LOW: Lower 8 bits of the VLAN type code (Default 00)
10.3.2
AVTCH - VLAN Type Code Register High
I2C Address h13; Serial Interface Address:h101 Accessed by serial interface and I2C (R/W) Bit [7:0] VLANType_HIGH: Upper 8 bits of the VLAN type code (Default is 81)
42
Zarlink Semiconductor Inc.
Data Sheet
10.3.3 PVMAP00_0 - Port 00 Configuration Register 0
MVTX2803
I2C Address h14, Serial Interface Address:h102 Accessed by serial interface and I2C (R/W) Port Based VLAN Mode This register indicates the legal egress ports. Example: A "1" on bit 7 means that packets arriving on port 0 can be sent to port 7. A "0" on bit 7 means that any packet destined to port 7 will be discarded. Bit[7:0]: * VLAN Mask for ports 7 to 0 (Default FF) 0 - Disable 1 - Enable
10.3.4
PVMAP00_3 - Port 00 Configuration Register 3
I2C Address h17, Serial Interface Address:h105) Accessed by serial interface and I2C (R/W) Port Based Mode 7 FP en 6 Drop 5 3 2 FNT 1 IF 0 Reserved
Default TX priority
Bit [1:0]: Bit [2]:
* *
Reserved (Default 0) Force untagout (Default 0) 0 Disable 1 Force untag output All packets transmitted from this port are untagged. This register is used when this port is connected to legacy equipment that does not support VLAN tagging.
Bit [5:3]:
*
Fixed Transmit priority. Used when bit[7] = 1 (Default 0) 000 Transmit Priority Level 0 (Lowest) 001 Transmit Priority Level 1 010 Transmit Priority Level 2 011 Transmit Priority Level 3 100 Transmit Priority Level 4 101 Transmit Priority Level 5 110 Transmit Priority Level 6 111 Transmit Priority Level 7 (Highest)
Zarlink Semiconductor Inc.
43
MVTX2803
Bit [6]: * Fixed Discard priority (Default 0) 0 - Discard Priority Level 0 (Lowest) 1 - Discard Priority Level 7(Highest) Bit [7]: *
Data Sheet
Enable Fix Priority (Default 0) 0 Disable fix priority. All frames are analyzed. Transmit Priority and Drop Priority are based on VLAN Tag, TOS or Logical Port. 1 Transmit Priority and Discard Priority are based on values programmed in bit [6:3]
Port VLAN Map PVMAP00_0,3 I2C Address h14,17; Serial Interface Address:h102,105) PVMAP01_0,3 I2C Address h18,1B; Serial Interface Address:h106,109) PVMAP02_0,3 I2C Address h1C,1F; Serial Interface Address:h10A, 0D) PVMAP03_0,3 I2C Address h20,23; Serial Interface Address:h10E, 111) PVMAP04_0,3 I2C Address h24,27; Serial Interface Address:h112, 115) PVMAP05_0,3 I2C Address h28,2B; Serial Interface Address:h116, 119) PVMAP06_0,3 I2C Address h2C,2F; Serial Interface Address:h11A,11D) PVMAP07_0,3 I2C Address h30,33; Serial Interface Address:h11E, 121)
10.3.5
PVMODE
I2C Address: h038, Serial Interface Address:h126 Accessed by serial interface (R/W) 7 RO 6 MP 5 BPDU 4 DM 3 Reserved 0
Bit [0]: Bit [4]:
* *
Reserved Must be '0' Disable MAC address 0 0: MAC address 0 is not leaned. 1: MAC address 0 is leaned.
Bit [5]:
*
Force BPDU as multicast frame (Default 0) 1: Enable. BPDU frames (frames with destination MAC address in the range of 01-80-C2 00-00-00 through 01-80-C2-00-00-0F) are forwarded as multicast frames. 0: Disable. Drop frames in this range.
44
Zarlink Semiconductor Inc.
Data Sheet
Bit [6]: * MAC/PORT 0: Single MAC address per system 1: Single MAC address per port Bit [7]: * Reserved
MVTX2803
10.4
Group 2 Address - Port Trunking Group
10.4.1
TRUNK0_MODE - Trunk group 0 and 1 mode
I2C Address: h039, Serial Interface Address:h207 Accessed by serial interface and I2C (R/W) Port Selection in unmanaged mode. Trunk group 0 and trunk group 1 are enable accordingly to bit [1:0] when input pin P_d[9] = 0 (external pull down). 7
2
1
Port sel
0
Bit [1:0]:
*
Port member selection for Trunk 0 and 1 in unmanaged mode (Default 2'b00) 00 - Only trunk group 0 is enable. Port 0 and 1 are used for trunk group0 01 - Only trunk group 0 is enable. Port 0,1 and 2 are used for trunk group0 10 - Only trunk group 0 is enable. Port 0,1,2 and 3 are used for trunk group0 11 - Trunk group 0 and 1 are enable. Port 0, 1 used for trunk group0, and port 2 and 3 are used for trunk group1
10.4.2
TRUNK1_MODE - Trunk group 1 mode (Unmanaged Mode)
I2C Address h03A; Serial Interface Address:h20E Accessed by serial interface and I2C (R/W) Port Selection in unmanaged mode. Trunk group 2 and Trunk group 3 are enable accordingly to bits [1:0] when input pin P_d[10] = 0 (External pull down). 7 2 1 0
Port Select
Zarlink Semiconductor Inc.
45
MVTX2803
Bit [1:0]: *
Data Sheet
Port member selection for Trunk 2 and 3 in unmanaged mode 00 - Only trunk group 2 is enable. Port 4 and 5 are used for trunk group2 01 - Only trunk group 2 is enable. Port 4, 5 and 6 are used for trunk group2 10 - Only trunk group 2 is enable. Port 4, 5, 6 and 7 are used for trunk group2 11 - Trunk group 2 and trunk group 3 are enable. Port 4 and used for trunk group2, and port 6 5 are and 7 are used for trunk group3
10.4.3
TX_AGE - Tx Queue Aging timer
I2C Address: h03B;Serial Interface Address:h312 Accessed by serial interface and I2C (R/W) 7
5
4 Tx Queue Agent
0
Bit[4:0]: Unit of 100ms (Default 8). Disable transmission queue aging if value is zero. Bit[7:5]: Reserved. (Must be '0')
10.5 10.5.1
Group 4 Address - Search Engine Group AGETIME_LOW - MAC address aging time Low
I2C Address: h03C; Serial Interface Address:h400 Accessed by serial interface and I2C (R/W) Bit [7:0] Low byte of the MAC address aging timer. (Default 2c) Mac address aging is enable/disable by boot strap T_d[9].
10.5.2
AGETIME_HIGH -MAC address aging time High
I2C Address h03D; Serial Interface Address h401 Accessed by serial interface and I2C (R/W) Bit [7:0]: High byte of the MAC address aging timer. (Default 00) Aging time is based on the following equation: {AGETIME_HIGH,AGETIME_LOW} X (# of MAC entries X100sec) Note: the numer of entries= 66K when T_d[5] is pull down (SRAM memory size = 512K) and 34K when T_d[5] is pull up (SRAM memory size = 256K).
46
Zarlink Semiconductor Inc.
Data Sheet
10.5.3 SE_OPMODE - Search Engine Operation Mode
MVTX2803
Serial Interface Address:h403 Accessed by CPU (R/W) 7 SL 6 DMS 5 0
Bit [5:0]: Bit [6]:
* *
Reserved Disable MCT speedup aging (Default 0) 1 - Disable speedup aging when MCT resource is low. 0 - Enable speedup aging when MCT resource is low.
Bit [7]:
*
Slow Learning (Default 0) 1- Enable slow learning. Learning is temporary disabled when search demand is high 0 - Learning is performed independent of search demand
10.6 10.6.1
Group 5 Address - Buffer Control/QOS Group FCBAT - FCB Aging Timer
I2C Address: h03E; Serial Interface Address:h500 7 FCBAT 0
Bit [7:0]:
* *
FCB Aging time. Unit of 1ms. (Default FF) FCBAT define the aging time out interval of FCB handle
10.6.2
2
QOSC - QOS Control
I C Address: h03F; Serial Interface Address:h501 Accessed by serial interface and I2C (R/W) 7 Tos-d Bit [0]:
6
Tos-p *
5
4
VF1c
3
1
fb
0
QoS frame lost is OK. Priority will be available for flow control enabled source only when this bit is set (Default 0)
Zarlink Semiconductor Inc.
47
MVTX2803
Bit [4]: * Per VLAN (Port based) Multicast Flow Control (Default 0) 0 - Disable 1 - Enable Bit [5]: Bit [6]: * * Reserved Select TOS bits for Priority (Default 0) 0 - Use TOS [4:2] bits to map the transmit priority 1 - Use TOS [5:3] bits to map the transmit priority Bit [7]: * select TOS bits for Drop (Default 0) 0 - Use TOS [4:2] bits to map the drop priority 1 - Use TOS [5:3] bits to map the drop priority
Data Sheet
10.6.3
2
FCR - Flooding Control Register
I C Address: h040; Serial Interface Address:h502 Accessed by serial interface and I2C (R/W) 7 Tos
6
TimeBase
4
3
U2MR
0
Bit [3:0]:
*
U2MR: Unicast to Multicast Rate. Units in terms of time base defined in bits [6:4]. This is used to limit the amount of flooding traffic. The value in U2MR specifies how many packets are allowed to flood within the time specified by bit [6:4]. To disable this function, program U2MR to 0. (Default = 4'h8) TimeBase: (Default = 000) 000 = 10us 001 = 20us 010 = 40us 011 = 80us 100 = 160us 101 = 320us 110 = 640us 111 = 10us, same as 000.
Bit [6:4]:
*
Bit [7]:
*
Select VLAN tag or TOS field (IP packets) to be preferentially picked to map transmit priority and drop priority (Default = 0). 0 - Select VLAN tag priority field over TOS field 1 - Select TOS field over VLAN tag priority field
48
Zarlink Semiconductor Inc.
Data Sheet
10.6.4 AVPML - VLAN Priority Map
MVTX2803
I2C Address: h041; Serial Interface Address:h503 Accessed by serial interface and I2C (R/W) 7 VP2
6
5
VP1
3
2
VP0
0
Registers AVPML, AVPMM, and AVPMH allow the eight VLAN priorities to map into eight internal level transmit priorities. Under the internal transmit priority, iseveni is the highest priority where as izeroi is the lowest. This feature allows the user the flexibility of redefining the VLAN priority field. For example, programming a value of 7 into bit 2:0 of the AVPML register would map packet VLAN priority ) into internal transmit priority 7. The new priority is used only inside the 2804. When the packet goes out it carries the original priority. Bit [2:0]: Bit [5:3]: Bit [7:6]: Mapped priority of 0 (Default 000) Mapped priority of 1 (Default 001) Mapped priority of 2 (Default 10)
10.6.5
AVPMM - VLAN Priority Map
I2C Address: h042, Serial Interface Address:h504 Accessed by serial interface and I2C (R/W) 7 VP5
6
VP4
4
3
VP3
1
0 VP2
Map VLAN priority into eight level transmit priorities: Bit [0]: Bit [3:1]: Bit [6:4]: Bit [7]: Mapped priority of 2 (Default 0) Mapped priority of 3 (Default 011) Mapped priority of 4 (Default 100) Mapped priority of 5 (Default 1)
10.6.6
AVPMH - VLAN Priority Map
I2C Address: h043, Serial Interface Address:h505 Accessed by serial interface and I2C (R/W) 7 VP7
5
4
VP6
2
1
VP5
0
Map VLAN priority into eight level transmit priorities:
Zarlink Semiconductor Inc.
49
MVTX2803
Bit [1:0]: Bit [4:2]: Bit [7:5]: Mapped priority of 5 (Default 10) Mapped priority of 6 (Default 110) Mapped priority of 7 (Default 111)
Data Sheet
10.6.7
OSPML - TOS Priority Map
I2C Address: h044, Serial Interface Address:h506 Accessed by serial interface and I2C (R/W) 7 TP2
65
TP1
32
TP0
0
Map TOS field in IP packet into four level transmit priorities Bit [2:0]: Bit [5:3]: Bit [7:6]: Mapped priority when TOS is 0 (Default 000) Mapped priority when TOS is 1 (Default 001) Mapped priority when TOS is 2 (Default 10)
10.6.8
I2 C
TOSPMM - TOS Priority Map
Address: h045, Serial Interface Address:h507
Accessed by serial interface and I2C (R/W) 7 TP5 6 TP4 4 3 TP3 1 0 TP2
Map TOS field in IP packet into four level transmit priorities
Bit [0]: Bit [3:1]: Bit [6:4]: Bit [7]:
Mapped priority when TOS is 2 (Default 0) Mapped priority when TOS is 3 (Default 011) Mapped priority when TOS is 4 (Default 100) Mapped priority when TOS is 5 (Default 1)
10.6.9
TOSPMH - TOS Priority Map
I2C Address: h046, Serial Interface Address:h508 Accessed by serial interface and I2C (R/W)
50
Zarlink Semiconductor Inc.
Data Sheet
7 TP7 5 4 TP6 2 1 TP5 0
MVTX2803
Map TOS field in IP packet into four level transmit priorities: Bit [1:0]: Bit [4:2]: Bit [7:5]: Mapped priority when TOS is 5 (Default 01) Mapped priority when TOS is 6 (Default 110) Mapped priority when TOS is 7 (Default 111)
10.6.10 AVDM - VLAN Discard Map
I2C Address: h047, Serial Interface Address:h509 Accessed by serial interface and I2C (R/W) 7 FDV7 6 FDV6 5 FDV5 4 FDV4 3 FDV3 2 FDV2 1 FDV1 0 FDV0
Map VLAN priority into frame discard when low priority buffer usage is above threshold. Frames with high discard (drop) priority will be discarded (dropped) before frames with low drop priority. * * 0 - Low discard priority 1 - High discard priority
Bit [0]: Bit [1]: Bit [2]: Bit [3]: Bit [4]: Bit [5]: Bit [6]: Bit [7]:
Frame discard priority for frames with VLAN transmit priority 0 (Default 0) Frame discard priority for frames with VLAN transmit priority 1 (Default 0) Frame discard priority for frames with VLAN transmit priority 2 (Default 0) Frame discard priority for frames with VLAN transmit priority 3 (Default 0) Frame discard priority for frames with VLAN transmit priority 4 (Default 0) Frame discard priority for frames with VLAN transmit priority 5 (Default 0) Frame discard priority for frames with VLAN transmit priority 6 (Default 0) Frame discard priority for frames with VLAN transmit priority 7 (Default 0)
Zarlink Semiconductor Inc.
51
MVTX2803
10.6.11 TOSDML - TOS Discard Map
I2C Address: h048, Serial Interface Address:h50A Accessed by serial interface and I2C (R/W) 7 FDT7 6 FDT6 5 FDT5 4 FDT4 3 FDT3 2 FDT2 1 FDT1 0 FDT0
Data Sheet
Map TOS into frame discard when low priority buffer usage is above threshold Bit [0]: Bit [1]: Bit [2]: Bit [3]: Bit [4]: Bit [5]: Bit [6]: Bit [7]: Frame discard priority for frames with TOS transmit priority 0 (Default 0) Frame discard priority for frames with TOS transmit priority 1 (Default 0) Frame discard priority for frames with TOS transmit priority 2 (Default 0) Frame discard priority for frames with TOS transmit priority 3 (Default 0) Frame discard priority for frames with TOS transmit priority 4 (Default 0) Frame discard priority for frames with TOS transmit priority 5 (Default 0) Frame discard priority for frames with TOS transmit priority 6 (Default 0) Frame discard priority for frames with TOS transmit priority 7 (Default 0)
10.6.12 BMRC - Broadcast/Multicast Rate Control
I2C Address: h049, Serial Interface Address:h50B Accessed by serial interface and I2C (R/W) 7 Broadcast Rate
4
3
Multicast Rate
0
This broadcast and multicast rate defines for each port the number of incoming packet allowed to be forwarded within a specified time. Once the packet rate is reached, packets will be dropped. To turn off the rate limit, program the field to 0. Bit [3:0] : Bit [7:4] : Multicast Rate Control Number of multicast packets allowed within the time defined in bits 6 to 4 of the Flooding Control Register (FCR). (Default 0). Broadcast Rate Control Number of broadcast packets allowed within the time defined in bits 6 to 4 of the Flooding Control Register (FCR). (Default 0)
52
Zarlink Semiconductor Inc.
Data Sheet
10.6.13 UCC - Unicast Congestion Control
I2C Address: h04A, Serial Interface Address: h50C Accessed by serial interface and I2C (R/W) 7 Unicast congest threshold 0
MVTX2803
Bit [7:0] :
Number of frame count. Used for best effort dropping at B% when destination port's best effort queue reaches UCC threshold and shared pool is all in use. Granularity 16 frame. (Default: h07)
10.6.14 MCC - Multicast Congestion Control
I2C Address: h0B7, Serial Interface Address: h50D Accessed by serial interface and I2C (R/W) 7 FC reaction prd
5
4
3
0
Multicast congest threshold
Bit [3:0]: Bit [4]: Bit [7:5]:
In multiples of two. Used for triggering MC flow control when destination port's best effort queue reaches MCC threshold. (Default 5'h08) Must be 0 Flow control reaction period. ([7:5] *4)+3 usec (Default 3'h2).
10.6.15 PRG - Port Reservation for Giga ports
I2C Address: h0B9, Serial Interface Address h50F Accessed by serial interface and I2C (R/W) 7 Buffer low thd 4 3 0
Per source buffer Reservation
Bit [3:0]:
Per source buffer reservation. Define the space in the FDB reserved for each port. Expressed in multiples of 16 packets. For each packet 1536 bytes are reserved in the memory. Default: 4'hA for 4MB memory 4'h6 for 2MB memory 4'h3 for 1MB memory
Zarlink Semiconductor Inc.
53
MVTX2803
Bits [7:4]: Expressed in multiples of 16 packets. Threshold for dropping all best effort frames when destination port best effort queues reach UCC threshold and shared pool is all used and source port reservation is at or below the PRG[7:4] level. Also the threshold for initiating UC flow control. Default: 4'h6 for 4MB memory 4'h2 for 2MB memory 4'h1 for 1MB memory
Data Sheet
FCB Reservation
10.6.16 SFCB - Share FCB Size
I2C Address: h04E, Serial Interface Address h510 Accessed by serial interface and I2C (R/W) 7 Shared buffer size Bits [7:0]: * Expressed in multiples of 8. Buffer reservation for shared pool. (Default 4G & 4M = 8'd62) (Default 4G & 2M = 8'd20) (Default 4G & 1M = 8'd08) (Default 8G & 4M = 8'd150) (Default 8G & 2M = 8'd55) (Default 8G & 1M = 8'd25) 0
10.6.17 C2RS - Class 2 Reserved Size
I2C Address: h04F, Serial Interface Address h511 Accessed by serial interface and I2C (R/W) 7 Class 2 FCB Reservation 0
Bits [7:0]:
*
Buffer reservation for class 2 (third lowest priority). Granularity 2. (Default 8'h00)
54
Zarlink Semiconductor Inc.
Data Sheet
10.6.18 C3RS - Class 3 Reserved Size
I2C Address: h050, Serial Interface Address h512 Accessed by serial interface and I2C (R/W) 7 Class 3 FCB Reservation 0
MVTX2803
Bits [7:0]:
*
Buffer reservation for class 3. Granularity 2.
(Default 8'h00)
10.6.19 C4RS - Class 4 Reserved Size
I2C Address: h051, Serial Interface Address h513 Accessed by serial interface and I2C (R/W) 7 Class 4 FCB Reservation 0
Bits [7:0]:
*
Buffer reservation for class 4. Granularity 2.
(Default 8'h00)
10.6.20 C5RS - Class 5 Reserved Size
I2C Address: h052; Serial Interface Address: h514 Accessed by serial interface and I2C (R/W) 7 Class 5 FCB Reservation 0
Bits [7:0]:
*
Buffer reservation for class 5. Granularity 2.
(Default 8'h00)
10.6.21 C6RS - Class 6 Reserved Size
I2C Address: h053; Serial Interface Address: h515 Accessed by serial interface and I2C (R/W) 7 Class 6 FCB Reservation 0
Bits [7:0]:
*
Buffer reservation for class 6 (second highest priority). Granularity 2. (Default 8'h00)
Zarlink Semiconductor Inc.
55
MVTX2803
10.6.22 C7RS - Class 7 Reserved Size
I2C Address: h054; Serial Interface Address: h516 Accessed by serial interface and I2C (R/W) 7 Class 7 FCB Reservation 0
Data Sheet
Bits [7:0]:
*
Buffer reservation for class 7 (highest priority). Granularity 2. (Default 8'h00)
Classes Byte Gigabit Port 0
10.6.23 QOSC00 - BYTE_C2_G0
I2C Address: h055, Serial Interface Address: h517 Bits [7:0]: Byte count threshold for C2 queue WRED (Default 8'h28) (1024byte/unit when Delay Bound is used) (1024byte/unit when WFQ is used)
10.6.24 QOSC01 - BYTE_C3_G0
I2C Address: h056, Serial Interface Address: h518 Bits [7:0]: Byte count threshold for C3 queue WRED (Default 8'h28) 512byte/unit when Delay Bound is used) (1024byte/unit when WFQ is used)
10.6.25 QOSC02 - BYTE_C4_G0
I2C Address: h057, Serial Interface Address: h519 Bits [7:0]: Byte count threshold for C4 queue WRED (Default 8'h28) (256byte/unit when Delay Bound is used) (1024byte/unit when WFQ is used)
10.6.26 QOSC03 - BYTE_C5_G0
I2C Address: h058, Serial Interface Address: h51A Bits [7:0]: Byte count threshold for C5 queue WRED (Default 8'h28) (128byte/unit when Delay Bound is used) (1024byte/unit when WFQ is used)
56
Zarlink Semiconductor Inc.
Data Sheet
10.6.27 QOSC04 - BYTE_C6_G0
I2C Address: h059, Serial Interface Address: h51B Bits [7:0]: Byte count threshold for C6 queue WRED (Default 8'h50) (64byte/unit when Delay Bound is used) (1024byte/unit when WFQ is used)
MVTX2803
10.6.28 QOSC05 - BYTE_C7_G0
I2C Address: h05A, Serial Interface Address: h51C Bits [7:0]: Byte count threshold for C6 queue WRED (Default 8'h50) (64byte/unit when Delay Bound is used) (1024byte/unit when WFQ is used)
QOSC00 through QOSC05 represent the values F-A in Table 3 for Gigabit port 0. They are per-queue byte thresholds for weighted random early drop (WRED). QOSC05 represents A, and QOSC00 represents F.
Classes Byte Gigabit Port 1
10.6.29 QOSC06 - BYTE_C2_G1
I2C Address: h05B, Serial Interface Address: h51D Bits [7:0]: Byte count threshold for C2 queue WRED (Default 8'h28) (1024byte/unit when Delay Bound is used) (1024byte/unit when WFQ is used)
10.6.30 QOSC07 - BYTE_C3_G1
I2C Address: h05C, Serial Interface Address: h51E Bits [7:0] Byte count threshold for C3 queue WRED (Default 8'h28) (512 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used)
Zarlink Semiconductor Inc.
57
MVTX2803
10.6.31 QOSC08 - BYTE_C4_G1
I2C Address: h05D, Serial Interface Address: h51F Bits [7:0]: Byte count threshold for C4 queue WRED (Default 8'h28) (256 byte/unit when Delay Bound is used) (1024byte/unit when WFQ is used)
Data Sheet
10.6.32 QOSC09 - BYTE_C5_G1
I2C Address: h05E, Serial Interface Address: h520 Bits [7:0]: Byte count threshold for C5 queue WRED (Default 8'h28) (128 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used)
10.6.33 QOSC0A - BYTE_C6_G1
I2C Address: h05F, Serial Interface Address: h521 Bits [7:0]: Byte count threshold for C6 queue WRED (Default 8'h50) (64 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used)
10.6.34 QOSC0B - BYTE_C7_G1
I2C Address: h060, Serial Interface Address: h522 Bits [7:0]: Byte count threshold for C7 queue WRED (Default 8'h50) (64 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used)
QOSC06 through QOSC0B represent the values F-A in Table 3. They are per-queue byte thresholds for random early drop. QOSC0B represents A, and QOSC06 represents F. Classes Byte Gigabit Port 2
10.6.35 QOSC0C - BYTE_C2_G2
I2C Address: h061, Serial Interface Address: h523 Bits [7:0]: Byte count threshold for C2 queue WRED (Default 8'h28) (1024 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used)
58
Zarlink Semiconductor Inc.
Data Sheet
10.6.36 QOSC0D - BYTE_C3_G2
I2C Address: h062, Serial Interface Address: h524 Bits [7:0]: Byte count threshold for C3 queue WRED (Default 8'h28) (512 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used)
MVTX2803
10.6.37 QOSC0E - BYTE_C4_G2
I2C Address: h063, Serial Interface Address: h525 Bits [7:0]: Byte count threshold for C4 queue WRED (Default 8'h28) (256 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used)
10.6.38 OSC0F - BYTE_C5_G2
I2C Address: h064, Serial Interface Address: h526
Bits [7:0]:
Byte count threshold for C5 queue WRED (Default 8'h28) (128 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used)
10.6.39 QOSC10 - BYTE_C6_G2
I2C Address: h065, Serial Interface Address: h27 Bits [7:0]: Byte count threshold for C6 queue WRED (Default 8'h50) (64 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used)
10.6.40 QOSC11 - BYTE_C7_G2
I2C Address: h066, Serial Interface Address: h528 Bits [7:0]: Byte count threshold for C7 queue WRED (Default 8'h50) (64 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used)
QOSC0C through QOSC11 represent the values F-A in Table 3 for Gigabit port 2. They are per-queue byte thresholds for random early drop. QOSC11 represents A, and QOSC0C represents F.
Zarlink Semiconductor Inc. 59
MVTX2803
Classes Byte Gigabit Port 3
Data Sheet
10.6.41 QOSC12 - BYTE_C2_G3
I2C Address: h067, Serial Interface Address: h529 Bits [7:0]: Byte count threshold for C2 queue WRED (Default 8'h28) (1024 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used)
10.6.42 QOSC13 - BYTE_C3_G3
I2C Address: h068, Serial Interface Address: h52A Bits [7:0]: Byte count threshold for C3 queue WRED (Default 8'h28) (512 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used)
10.6.43 QOSC14 - BYTE_C4_G3
I2C Address: h069, Serial Interface Address: h52B Bits [7:0]: Byte count threshold for C4 queue WRED (Default 8'h28) (256 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used)
10.6.44 QOSC15 - BYTE_C5_G3
I2C Address: h06A, Serial Interface Address: h52C Bits [7:0]: Byte count threshold for C5 queue WRED (Default 8'h28) (128 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used)
10.6.45 QOSC16 - BYTE_C6_G3
I2C Address: h06B, Serial Interface Address: h52D Bits [7:0]: Byte count threshold for C6 queue WRED (Default 8'h50) (64 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used)
60
Zarlink Semiconductor Inc.
Data Sheet
10.6.46 QOSC17 - BYTE_C7_G3
I2C Address: h06C, Serial Interface Address: h52E Bits [7:0]: Byte count threshold for C7 queue WRED (Default 8'h50) (64 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used)
MVTX2803
QOSC12 through QOSC17 represent the values F-A in Table 3 for Gigabit port 3. They are per-queue byte thresholds for random early drop. QOSC17 represents A, and QOSC12 represents F. Classes Byte Gigabit Port 4
10.6.47 QOSC18 - BYTE_C2_G4
I2C Address: h06D, Serial Interface Address:h 52F Bits [7:0]: Byte count threshold for C2 queue WRED (Default 8'h28) (1024 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used)
10.6.48 QOSC019 - BYTE_C3_G4
I2C Address: h06E, Serial Interface Address: h530 Bits [7:0]: Byte count threshold for C3 queue WRED (Default 8'h28) (512 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used)
10.6.49 QOSC1A - BYTE_C4_G4
I2C Address: h06F, Serial Interface Address: h531 Bits [7:0]: Byte count threshold for C4 queue WRED (Default 8'h28) (256 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used)
10.6.50 QOSC1B - BYTE_C5_G4
I2C Address: h070, Serial Interface Address: h532 Bits [7:0]: Byte count threshold for C5 queue WRED (Default 8'h28) (128 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used)
Zarlink Semiconductor Inc.
61
MVTX2803
10.6.51 QOSC1C - BYTE_C6_G4
I2C Address: h071, Serial Interface Address: h533 Bits [7:0]: Byte count threshold for C6 queue WRED (Default 8'h28) (64 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used)
Data Sheet
10.6.52 QOSC1D- BYTE_C7_G4
I2C Address: h072, Serial Interface Address: h534 Bits [7:0]: Byte count threshold for C7 queue WRED (Default 8'h28) (64 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used)
QOSC18 through QOSC1D represent the values F-A in Table 3 for Gigabit port 4. They are per-queue byte thresholds for random early drop. QOSC1D represents A, and QOSC18 represents F. Classes Byte Gigabit Port 5
10.6.53 QOSC1E- BYTE_C2_G5
I2C Address: h073, Serial Interface Address: h535 Bits [7:0]: Byte count threshold for C2 queue WRED (Default 8'h28) (1024 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used)
10.6.54 QOSC1F - BYTE_C3_G5
I2C Address: h074, Serial Interface Address: h536 Bits [7:0]: Byte count threshold for C3 queue WRED (Default 8'h28) (512 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used)
10.6.55 QOSC20 - BYTE_C4_G5
I2C Address: h075, Serial Interface Address: h537 Bits [7:0]: Byte count threshold for C4 queue WRED (Default 8'h28) (256 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used)
62
Zarlink Semiconductor Inc.
Data Sheet
10.6.56 QOSC21 - BYTE_C5_G5
I2C Address: h076, Serial Interface Address: h538 Bits [7:0]: Byte count threshold for C5 queue WRED (Default 8'h28) (128 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used)
MVTX2803
10.6.57 QOSC22 - BYTE_C6_G5
I2C Address: h077, Serial Interface Address: h539 Bits [7:0]: Byte count threshold for C6 queue WRED (Default 8'h50) (64 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used)
10.6.58 QOSC23 - BYTE_C7_G5
I2C Address: h078, Serial Interface Address: h53A Bits [7:0]: Byte count threshold for C4 queue WRED (Default 8'h50) (64 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used)
QOSC1E through QOSC23 represent the values F-A in Table 3 for Gigabit port 5. They are per-queue byte thresholds for random early drop. QOSC23 represents A, and QOSC1E represents F.
Classes Byte Gigabit Port 6
10.6.59 QOSC24 - BYTE_C2_G6
I2C Address: h079, Serial Interface Address: h53B Bits [7:0]: Byte count threshold for C2 queue WRED (Default 8'h28) (1024 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used)
Zarlink Semiconductor Inc.
63
MVTX2803
10.6.60 QOSC25 - BYTE_C3_G6
I2C Address: h07A, Serial Interface Address: h53C Bits [7:0]: Byte count threshold for C3 queue WRED (Default 8'h28) (512 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used)
Data Sheet
10.6.61 QOSC26 - BYTE_C4_G6
I2C Address: h07B, Serial Interface Address: h53D Bits [7:0]: Byte count threshold for C4 queue WRED (Default 8'h28) (256 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used)
10.6.62 QOSC27 - BYTE_C5_G6
I2C Address: h07C, Serial Interface Address: h53E Bits [7:0]: Byte count threshold for C5 queue WRED (Default 8'h28) (128 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used)
10.6.63 QOSC28 - BYTE_C6_G6
I2C Address: h07D, Serial Interface Address: h53F Bits [7:0]: Byte count threshold for C6 queue WRED (Default 8'h50) (64 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used)
10.6.64 QOSC29 - BYTE_C7_G6
I2C Address: h07E, Serial Interface Address:h 540 Bits [7:0]: Byte count threshold for C7 queue WRED (Default 8'h50) (64 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used)
QOSC24 through QOSC29 represent the values F-A in Table 3 for Gigabit port 6. They are per-queue byte thresholds for random early drop. QOSC29 represents A, and QOSC24 represents F.
64
Zarlink Semiconductor Inc.
Data Sheet
Classes Byte Gigabit Port 7
MVTX2803
10.6.65 QOSC2A - BYTE_C2_G7
I2C Address: h07F, Serial Interface Address: h541 Bits [7:0]: Byte count threshold for C2 queue WRED (Default 8'h28) (1024 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used)
10.6.66 QOSC2B - BYTE_C3_G7
I2C Address: h080, Serial Interface Address: h542 Bits [7:0]: Byte count threshold for C3 queue WRED (Default 8'h28) (512 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used)
10.6.67 QOSC2C - BYTE_C4_G7
I2C Address: h081, Serial Interface Address: h543 Bits [7:0]: Byte count threshold for C4 queue WRED (Default 8'h28) (256 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used)
10.6.68 QOSC2D - BYTE_C5_G7
I2C Address: h082, Serial Interface Address: h544 Bits [7:0]: Byte count threshold for C5 queue WRED (Default 8'h28) (128 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used)
10.6.69 QOSC2E - BYTE_C6_G7
I2C Address: h083, Serial Interface Address: h545 Bits [7:0]: Byte count threshold for C6 queue WRED (Default 8'h50) (64 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used)
Zarlink Semiconductor Inc.
65
MVTX2803
10.6.70 QOSC2F - BYTE_C7_G7
I2C Address: h084, Serial Interface Address: h546 Bits [7:0]: Byte count threshold for C5 queue WRED (Default 8'h50) (64 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used)
Data Sheet
QOSC00 through QOSC05 represent the values F-A in Table 3 for Gigabit port 7. They are per-queue byte thresholds for random early drop. QOSC05 represents A, and QOSC00 represents F. Classes Byte Limit CPU Classes WFQ Credit Set 0
10.6.71 QOSC33 - CREDIT_C0_G0
Serial Interface Address: h54A Bits [5:0]: W0 - Credit register for WFQ. (Default 6'h04)
Bits [7:6]:
*
Priority type. Define one of the four QoS mode of operation for port 0 (Default 2'00) 00 : Option 1 01: Option 2 10: Option 3 11: Option 4
See table below Queue Option 1 Bit [7:6] = 2'B00 Option 2 Bit [7:6] = 2'B01 Option 3 Bit [7:6] = 2'B10 Opition 4 Bit [7:6] = 2'B11 Credit for WFQ - Bit [5:0] P7 P6 P5 P4 P3 P2 P1 BE BE P0
DELAY BOUND SP SP WFQ W 7 W 6 W 5 W 4 W 3 W 2 DELAY BOUND WFQ
W 1
W 0
66
Zarlink Semiconductor Inc.
Data Sheet
10.6.72 QOSC34 - CREDIT_C1_G0
Serial Interface Address: h54B Bits [7]: *
MVTX2803
Flow control allow during WFQ scheme. (Default 1'b1) 0 = Not support QoS when the Source port Flow control status is on. 1= Always support QoS)
Bits [6]:
*
Flow control BE Queue only. (Default 1'b1) 0= DO NOT send any frames if the XOFF is on. 1= the P7-P2 frames can be sent even the XOFF is ON
Bits [5:0]
*
W1 - Credit register. (Default 4'h04)
Fc_allow
Fc_be_only
Lost_ok Ingress- for src fc status 0 1 0 1 0 1 Go to BE Queue if (Src FC or Des FC on) otherwise Normal Go to BE Queue if (Dest FC on) otherwise Normal (WFQ only) Go to BE Queue if (Src FC on) otherwise BAD (WFQ only) Always Normal Go to BE Queue if (Src FC on) Always Normal
Egress- for dest fc_status 0 0 1 1 X X 0 0 0 0 1 1
10.6.73 QOSC35 - CREDIT_C2_G0
Serial Interface Address: h54C Bits [5:0] Bits [7:6]: W2 - Credit register. (Default 4'h04) Reserved
10.6.74 QOSC36 - CREDIT_C3_G0
Serial Interface Address: h54D Bits [5:0] Bits [7:6]: W3 - Credit register. (Default 4'h04) Reserved
Zarlink Semiconductor Inc.
67
MVTX2803
10.6.75 QOSC37 - CREDIT_C4_G0
Serial Interface Address: h54E Bits [5:0] Bits [7:6]: W4 - Credit register. (Default 4'h04) Reserved
Data Sheet
10.6.76 QOSC38 - CREDIT_C5_G0
Serial Interface Address: h54F Bits [5:0] Bits [7:6]: W5 - Credit register. (Default 5'h8) Reserved
10.6.77 QOSC39- CREDIT_C6_G0
Serial Interface Address: h550 Bits [5:0] Bits [7:6]: W6 - Credit register. (Default 5'h8) Reserved
10.6.78 QOSC3A- CREDIT_C7_G0
Serial Interface Address: h551 Bits [5:0] Bits [7:6]: W7 - Credit register. (Default 5'h10) Reserved
QOSC33 through QOSC3Arepresents the set of WFQ parameters (see section 7.5) for Gigabit port 0. The granularity of the numbers (bits [5:0]) is 1, and their sum must be 64. QOSC33 corresponds to W0, and QOSC3A corresponds to W7. Classes WFQ Credit Port G1
10.6.79 QOSC3B - CREDIT_C0_G1
Serial Interface Address: h552 Bits [5:0]: Bits [7:6]: * W0 - Credit register for WFQ. (Default 6'h04) Priority type. Define one of the four QoS mode of operation for port 1 (Default 2'00) 00 : Option 1 01: Option 2 10: Option 3 11: Option 4
68
Zarlink Semiconductor Inc.
Data Sheet
See table below: Queue Option 1 Bit [7:6] = 2'B00 Option 2 Bit [7:6] = 2'B01 Option 3 Bit [7:6] = 2'B10 Opition 4 Bit [7:6] = 2'B11 Credit for WFQ - Bit [5:0] P7 P6 P5 P4 P3 P2 P1 BE BE P0
MVTX2803
DELAY BOUND SP SP WFQ W 7 W 6 W 5 W 4 W 3 W 2 DELAY BOUND WFQ
W 1
W 0
10.6.80 QOSC3C - CREDIT_C1_G1
Serial Interface Address: h54B Bits [7]: * Flow control allow during WFQ scheme. (Default 1'b1) 0 = Not support QoS when the Source port Flow control status is on. 1= Always support QoS) Bits [6]: * Flow control BE Queue only. (Default 1'b1) 0= DO NOT send any frames if the XOFF is on. 1= the P7-P2 frames can be sent even the XOFF is ON Bits [5:0]
* W1 - Credit register. (Default 4'h04)
Fc_allow
Fc_be_only
Lost_ok Ingress- for src fc status 0 1 0 1 0 1 Go to BE Queue if (Src FC or Des FC on) otherwise Normal Go to BE Queue if (Dest FC on) otherwise Normal (WFQ only) Go to BE Queue if (Src FC on) otherwise BAD (WFQ only) Always Normal Go to BE Queue if (Src FC on) Always Normal
Egress- for dest fc_status 0 0 1 1 X X 0 0 0 0 1 1
Zarlink Semiconductor Inc.
69
MVTX2803
10.6.81 QOSC3D - CREDIT_C2_G1
Serial Interface Address: h553 Bits [5:0] Bits [7:6]: W2 - Credit register. (Default 4'h04) Reserved
Data Sheet
10.6.82 QOSC3E - CREDIT_C3_G1
Serial Interface Address: h554 Bits [5:0] Bits [7:6]: W3 - Credit register. (Default 4'h04) Reserved
10.6.83 QOSC3F - CREDIT_C4_G1
Serial Interface Address: h555 Bits [5:0] Bits [7:6]: W4 - Credit register. (Default 4'h04) Reserved
10.6.84 QOSC40 - CREDIT_C5_G1
Serial Interface Address: h556 Bits [5:0] Bits [7:6]: W5 - Credit register. (Default 5'h8) Reserved
10.6.85 QOSC41- CREDIT_C6_G1
Serial Interface Address: h557
Bits [5:0] Bits [7:6]:
W6 - Credit register. (Default 5'h8) Reserved
10.6.86 QOSC42- CREDIT_C7_G1
Serial Interface Address: h558 Bits [5:0] Bits [7:6]: W7 - Credit register. (Default 5'h10) Reserved
QOSC3B through QOSC42 represents the set of WFQ parameters (see section 7.5) for Gigabit port 1. The granularity of the numbers (bits [5:0]) is 1, and their sum must be 64. QOSC3B corresponds to W0, and QOSC42 corresponds to W7.
70
Zarlink Semiconductor Inc.
Data Sheet
Classes WFQ Credit Port G2
MVTX2803
10.6.87 QOSC43 - CREDIT_C0_G2
Serial Interface Address: h55A Bits [5:0]: Bits [7:6]: * W0 - Credit register for WFQ. (Default 6'h04) Priority type. Define one of the four QoS mode of operation for port 2 (Default 2'00) 00 : Option 1 01: Option 2 10: Option 3 11: Option 4
See table below: Queue Option 1 Bit [7:6] = 2'B00 Option 2 Bit [7:6] = 2'B01 Option 3 Bit [7:6] = 2'B10 Opition 4 Bit [7:6] = 2'B11 Credit for WFQ - Bit [5:0] P7 P6 P5 P4 P3 P2 P1 BE BE P0
DELAY BOUND SP SP WFQ W 7 W 6 W 5 W 4 W 3 W 2 DELAY BOUND WFQ
W 1
W 0
10.6.88 QOSC44 - CREDIT_C1_G2
Serial Interface Address: h55B Bits [7]: * Flow control allow during WFQ scheme. (Default 1'b1) 0 = Not support QoS when the Source port Flow control status is on. 1= Always support QoS) Bits [6]: Flow control BE Queue only. (Default 1'b1) 0= DO NOT send any frames if the XOFF is on. 1= the P7-P2 frames can be sent even the XOFF is ON Bits [5:0] W1 - Credit register. (Default 4'h04)
Zarlink Semiconductor Inc.
71
MVTX2803
Fc_allow Fc_be_only Lost_ok Ingress- for src fc status 0 1 0 1 0 1
Data Sheet
Egress- for dest fc_status 0 0 1 1 X X 0 0 0 0 1 1
Go to BE Queue if (Src FC or Des FC on) otherwise Normal Go to BE Queue if (Dest FC on) otherwise Normal (WFQ only) Go to BE Queue if (Src FC on) otherwise BAD (WFQ only) Always Normal Go to BE Queue if (Src FC on) Always Normal
10.6.89 QOSC45 - CREDIT_C2_G2
Serial Interface Address: h55C Bits [5:0] Bits [7:6]: W2 - Credit register. (Default 4'h04) Reserved
10.6.90 QOSC46 - CREDIT_C3_G2
Serial Interface Address: h55D Bits [5:0] Bits [7:6]: W3 - Credit register. (Default 4'h04) Reserved
10.6.91 QOSC47 - CREDIT_C4_G2
Serial Interface Address: h55E Bits [5:0] Bits [7:6]: W4 - Credit register. (Default 4'h04) Reserved
10.6.92 QOSC48 - CREDIT_C5_G2
Serial Interface Address: h55F Bits [5:0] Bits [7:6]: W5 - Credit register. (Default 5'h8) Reserved
72
Zarlink Semiconductor Inc.
Data Sheet
10.6.93 QOSC49- CREDIT_C6_G2
Serial Interface Address: h560 Bits [5:0] Bits [7:6]: W6 - Credit register. (Default 5'h8) Reserved
MVTX2803
10.6.94 QOSC4A- CREDIT_C7_G2
Serial Interface Address: h561 Bits [5:0] Bits [7:6]: W7 - Credit register. (Default 5'h10) Reserved
QOSC43 through QOSC4Arepresents the set of WFQ parameters (see section 7.5) for Gigabit port 2. The granularity of the numbers (bits [5:0]) is 1, and their sum must be 64. QOSC43 corresponds to W0, and QOSC4A corresponds to W7. Classes WFQ Credit Port G3
10.6.95 QOSC4B - CREDIT_C0_G3
Serial Interface Address: h562 Bits [5:0]: Bits [7:6]: W0 - Credit register for WFQ. (Default 6'h04) Priority type. Define one of the four QoS mode of operation for port 3 (Default 2'00) 00 : Option 1 01: Option 2 10: Option 3 11: Option 4
See table below: Queue Option 1 Bit [7:6] = 2'B00 Option 2 Bit [7:6] = 2'B01 Option 3 Bit [7:6] = 2'B10 Opition 4 Bit [7:6] = 2'B11 Credit for WFQ - Bit [5:0] P7 P6 P5 P4 P3 P2 P1 BE BE P0
DELAY BOUND SP SP WFQ W 7 W 6 W 5 W 4 W 3 W 2 DELAY BOUND WFQ
W 1
W 0
Zarlink Semiconductor Inc.
73
MVTX2803
10.6.96 QOSC4 - CREDIT_C1_G3
Serial Interface Address: h563 Bits [7]: *
Data Sheet
Flow control allow during WFQ scheme. (Default 1'b1) 0 = Not support QoS when the Source port Flow control status is on. 1= Always support QoS)
Bits [6]:
*
Flow control BE Queue only. (Default 1'b1) (0= DO NOT send any frames if the XOFF is on. (1= the P7-P2 frames can be sent even the XOFF is ON)
Bits [5:0]
W1 - Credit register. (Default 4'h04)
Fc_allow
Fc_be_only
Lost_ok Ingress- for src fc status 0 1 0 1 0 1 Go to BE Queue if (Src FC or Des FC on) otherwise Normal Go to BE Queue if (Dest FC on) otherwise Normal (WFQ only) Go to BE Queue if (Src FC on) otherwise BAD (WFQ only) Always Normal Go to BE Queue if (Src FC on) Always Normal
Egress- for dest fc_status 0 0 1 1 X X 0 0 0 0 1 1
10.6.97 QOSC4D - CREDIT_C2_G3
Serial Interface Address: h564 Bits [5:0] Bits [7:6]: W2 - Credit register. (Default 4'h04) Reserved
10.6.98 QOSC4E - CREDIT_C3_G3
Serial Interface Address: h565 Bits [5:0] Bits [7:6]: W3 - Credit register. (Default 4'h04) Reserved
74
Zarlink Semiconductor Inc.
Data Sheet
10.6.99 QOSC4F - CREDIT_C4_G3
Serial Interface Address: h566 Bits [5:0] Bits [7:6]: W4 - Credit register. (Default 4'h04) Reserved
MVTX2803
10.6.100 QOSC50 - CREDIT_C5_G3
Serial Interface Address: h567 Bits [5:0] Bits [7:6]: W5 - Credit register. (Default 5'h8) Reserved
10.6.101 QOSC51- CREDIT_C6_G3
Serial Interface Address: h568 Bits [5:0] Bits [7:6]: W6 - Credit register. (Default 5'h8) Reserved
10.6.102 QOSC52- CREDIT_C7_G3
Serial Interface Address: h569 Bits [5:0] Bits [7:6]: W7 - Credit register. (Default 5'h10) Reserved
QOSC4B through QOSC52 represents the set of WFQ parameters (see section 7.5) for Gigabit port 3. The granularity of the numbers (bits [5:0]) is 1, and their sum must be 64. QOSC4B corresponds to W0, and QOSC52 corresponds to W7. Classes WFQ Credit Port G4
10.6.103 QOSC53 - CREDIT_C0_G4
Serial Interface Address: h56A Bits [5:0]: Bits [7:6]: * W0 - Credit register for WFQ. (Default 6'h04) Priority type. Define one of the four QoS mode of operation for port 4 (Default 2'00) 00 : Option 1 01: Option 2 10: Option 3 11: Option 4
Zarlink Semiconductor Inc.
75
MVTX2803
See table below: Queue Option 1 Bit [7:6] = 2'B00 Option 2 Bit [7:6] = 2'B01 Option 3 Bit [7:6] = 2'B10 Opition 4 Bit [7:6] = 2'B11 Credit for WFQ - Bit [5:0] P7 P6 P5 P4 P3 P2 P1 BE BE P0
Data Sheet
DELAY BOUND SP SP WFQ W 7 W 6 W 5 W 4 W 3 W 2 DELAY BOUND WFQ
W 1
W 0
10.6.104 QOSC54 - CREDIT_C1_G4
Serial Interface Address: h56B Bits [7]: * Flow control allow during WFQ scheme. (Default 1'b1) 0 = Not support QoS when the Source port Flow control status is on. 1= Always support QoS) Bits [6]: * Flow control BE Queue only. (Default 1'b1) (0= DO NOT send any frames if the XOFF is on. (1= the P7-P2 frames can be sent even the XOFF is ON) Bits [5:0] W1 -Credit register. (Default 4'h04)
Fc_allow
Fc_be_only
Lost_ok Ingress- for src fc status 0 1 0 1 0 1 Go to BE Queue if (Src FC or Des FC on) otherwise Normal Go to BE Queue if (Dest FC on) otherwise Normal (WFQ only) Go to BE Queue if (Src FC on) otherwise BAD (WFQ only) Always Normal Go to BE Queue if (Src FC on) Always Normal
Egress- for dest fc_status 0 0 1 1 X X 0 0 0 0 1 1
76
Zarlink Semiconductor Inc.
Data Sheet
10.6.105 QOSC55 - CREDIT_C2_G4
Serial Interface Address: h56C Bits [5:0] Bits [7:6]: W2 - Credit register. (Default 4'h04) Reserved
MVTX2803
10.6.106 QOSC56 - CREDIT_C3_G4
Serial Interface Address: h56D
Bits [5:0] Bits [7:6]:
W3 - Credit register. (Default 4'h04) Reserved
10.6.107 QOSC57 - CREDIT_C4_G4
Serial Interface Address: h56E Bits [5:0] Bits [7:6]: W4 - Credit register. (Default 4'h04) Reserved
10.6.108 QOSC58 - CREDIT_C5_G4
Serial Interface Address: h56F Bits [5:0] Bits [7:6]: W5 - Credit register. (Default 5'h8) Reserved
10.6.109 QOSC59- CREDIT_C6_G4
Serial Interface Address: h570 Bits [5:0] Bits [7:6]: W6 - Credit register. (Default 5'h8) Reserved
10.6.110 QOSC5A- CREDIT_C7_G4
Serial Interface Address: h571 Bits [5:0] Bits [7:6]: W7 - Credit register. (Default 5'h10) Reserved
QOSC53 through QOSC5A represents the set of WFQ parameters (see section 7.5) for Gigabit port 4. The granularity of the numbers (bits [5:0]) is 1, and their sum must be 64. QOSC53 corresponds to W0, and QOSC5A corresponds to W7.
Zarlink Semiconductor Inc.
77
MVTX2803
Data Sheet
78
Zarlink Semiconductor Inc.
Data Sheet
Classes WFQ Credit Port G5
MVTX2803
10.7.114 QOSC5B - CREDIT_C0_G5
Serial Interface Address: h572 Bits [5:0]: Bits [7:6]: * W0 - Credit register for WFQ. (Default 6'h04) Priority type. Define one of the four QoS mode of operation for port 5 (Default 2'00) 00 : Option 1 01: Option 2 10: Option 3 11: Option 4
See table below: Queue Option 1 Bit [7:6] = 2'B00 Option 2 Bit [7:6] = 2'B01 Option 3 Bit [7:6] = 2'B10 Opition 4 Bit [7:6] = 2'B11 Credit for WFQ - Bit [5:0] P7 P6 P5 P4 P3 P2 P1 BE BE P0
DELAY BOUND SP SP WFQ W 7 W 6 W 5 W 4 W 3 W 2 DELAY BOUND WFQ
W 1
W 0
10.7.115 QOSC5C - CREDIT_C1_G5
Serial Interface Address: h573 Bits [7]: * Flow control allow during WFQ scheme. (Default 1'b1) 0 = Not support QoS when the Source port Flow control status is on. 1= Always support QoS) Bits [6]: * Flow control BE Queue only. (Default 1'b1) (0= DO NOT send any frames if the XOFF is on. (1= the P7-P2 frames can be sent even the XOFF is ON) Bits [5:0] W1 - Credit register. (Default 4'h04)
Zarlink Semiconductor Inc.
79
MVTX2803
Fc_allow Fc_be_only Lost_ok Ingress- for src fc status 0 1 0 1 0 1
Data Sheet
Egress- for dest fc_status 0 0 1 1 X X 0 0 0 0 1 1
Go to BE Queue if (Src FC or Des FC on) otherwise Normal Go to BE Queue if (Dest FC on) otherwise Normal (WFQ only) Go to BE Queue if (Src FC on) otherwise BAD (WFQ only) Always Normal Go to BE Queue if (Src FC on) Always Normal
10.7.116 QOSC5D - CREDIT_C2_G5
Serial Interface Address: h574 Bits [5:0] Bits [7:6]: W2 - Credit register. (Default 4'h04) Reserved
10.7.117 QOSC5E - CREDIT_C3_G5
Serial Interface Address: h575 Bits [5:0] Bits [7:6]: W3 - Credit register. (Default 4'h04) Reserved
10.7.118 QOSC5F - CREDIT_C4_G5
Serial Interface Address: h576 Bits [5:0] Bits [7:6]: W4 - Credit register. (Default 4'h04) Reserved
10.7.119 QOSC60 - CREDIT_C5_G5
Serial Interface Address: h577 Bits [5:0] Bits [7:6]: W5 - Credit register. (Default 5'h8) Reserved
80
Zarlink Semiconductor Inc.
Data Sheet
10.7.120 QOSC61- CREDIT_C6_G5
Serial Interface Address: h578 Bits [5:0] Bits [7:6]: W6 - Credit register. (Default 5'h8) Reserved
MVTX2803
10.7.121 QOSC62- CREDIT_C7_G5
Serial Interface Address: h579 Bits [5:0] Bits [7:6]: W7 - Credit register. (Default 5'h10) Reserved
QOSC5B through QOSC62 represents the set of WFQ parameters (see section 7.5) for Gigabit port 5. The granularity of the numbers (bits [5:0]) is 1, and their sum must be 64. QOSC5B corresponds to W0, and QOSC62 corresponds to W7. Classes WFQ Credit Port G6
10.7.122 QOSC63 - CREDIT_C0_G6
Serial Interface Address: h57A Bits [5:0]: Bits [7:6]: * W0 - Credit register for WFQ. (Default 6'h04) Priority type. Define one of the four QoS mode of operation for port 6 (Default 2'00) 00 : Option 1 01: Option 2 10: Option 3 11: Option 4
See table below: Queue Option 1 Bit [7:6] = 2'B00 Option 2 Bit [7:6] = 2'B01 Option 3 Bit [7:6] = 2'B10 Opition 4 Bit [7:6] = 2'B11 Credit for WFQ - Bit [5:0] P7 P6 P5 P4 P3 P2 P1 BE BE P0
DELAY BOUND SP SP WFQ W 7 W 6 W 5 W 4 W 3 W 2 DELAY BOUND WFQ
W 1
W 0
Zarlink Semiconductor Inc.
81
MVTX2803
10.7.123 QOSC64 - CREDIT_C1_G6
Serial Interface Address: h57B Bits [7]: *
Data Sheet
Flow control allow during WFQ scheme. (Default 1'b1) 0 = Not support QoS when the Source port Flow control status is on. 1= Always support QoS)
Bits [6]:
*
Flow control BE Queue only. (Default 1'b1) (0= DO NOT send any frames if the XOFF is on. (1= the P7-P2 frames can be sent even the XOFF is ON)
Bits [5:0]
W1 - Credit register. (Default 4'h04)
Fc_allow
Fc_be_only
Lost_ok Ingress- for src fc status 0 1 0 1 0 1 Go to BE Queue if (Src FC or Des FC on) otherwise Normal Go to BE Queue if (Dest FC on) otherwise Normal (WFQ only) Go to BE Queue if (Src FC on) otherwise BAD (WFQ only) Always Normal Go to BE Queue if (Src FC on) Always Normal
Egress- for dest fc_status 0 0 1 1 X X 0 0 0 0 1 1
10.7.124 QOSC65 - CREDIT_C2_G6
Serial Interface Address: h57C Bits [5:0] Bits [7:6]: W2 - Credit register. (Default 4'h04) Reserved
10.7.125 QOSC66 - CREDIT_C3_G6
Serial Interface Address: h57D Bits [5:0] Bits [7:6]: W3 - Credit register. (Default 4'h04) Reserved
82
Zarlink Semiconductor Inc.
Data Sheet
10.7.126 QOSC67 - CREDIT_C4_G6
Serial Interface Address: h57E Bits [5:0] Bits [7:6]: W4 - Credit register. (Default 4'h04) Reserved
MVTX2803
10.7.127 QOSC68 - CREDIT_C5_G6
Serial Interface Address: h57F Bits [5:0] Bits [7:6]: W5 - Credit register. (Default 5'h8) Reserved
10.7.128 QOSC69- CREDIT_C6_G6
Serial Interface Address: h580 Bits [5:0] Bits [7:6]: W6 - Credit register. (Default 5'h8) Reserved
10.7.129 QOSC6A- CREDIT_C7_G6
Serial Interface Address: h581 Bits [5:0] Bits [7:6]: W7 - Credit register. (Default 5'h10) Reserved
QOSC63 through QOSC6A represents the set of WFQ parameters (see section 7.5) for Gigabit port 6. The granularity of the numbers (bits [5:0]) is 1, and their sum must be 64. QOSC63 corresponds to W0, and QOSC6A corresponds to W7.
Zarlink Semiconductor Inc.
83
MVTX2803
Classes WFQ Credit Port G7
Data Sheet
10.7.130 QOSC6B - CREDIT_C0_G7
Serial Interface Address: h582 Bits [5:0]: Bits [7:6]: * W0 - Credit register for WFQ. (Default 6'h04) ! Priority type. Define one of the four QoS mode of operation for port 7 (Default 2'00) 00 : Option 1 01: Option 2 10: Option 3 11: Option 4
Queue Option 1 Bit [7:6] = 2'B00 Option 2 Bit [7:6] = 2'B01 Option 3 Bit [7:6] = 2'B10 Opition 4 Bit [7:6] = 2'B11 Credit for WFQ - Bit [5:0]
P7
P6
P5
P4
P3
P2
P1 BE BE
P0
DELAY BOUND SP SP WFQ W 7 W 6 W 5 W 4 W 3 W 2 DELAY BOUND WFQ
W 1
W 0
10.7.131 QOSC6C - CREDIT_C1_G7
Serial Interface Address: h583 Bits [7]: * Flow control allow during WFQ scheme. (Default 1'b1) 0 = Not support QoS when the Source port Flow control status is on. 1= Always support QoS) Bits [6]: * ! Flow control BE Queue only. (Default 1'b1) (0= DO NOT send any frames if the XOFF is on. (1= the P7-P2 frames can be sent even the XOFF is ON) Bits [5:0] W1 - Credit register. (Default 4'h04)
84
Zarlink Semiconductor Inc.
Data Sheet
Fc_allow Fc_be_only Lost_ok Ingress- for src fc status 0 1 0 1 0 1
MVTX2803
Egress- for dest fc_status 0 0 1 1 X X 0 0 0 0 1 1
Go to BE Queue if (Src FC or Des FC on) otherwise Normal Go to BE Queue if (Dest FC on) otherwise Normal (WFQ only) Go to BE Queue if (Src FC on) otherwise BAD (WFQ only) Always Normal Go to BE Queue if (Src FC on) Always Normal
10.7.132 QOSC6D - CREDIT_C2_G7
Serial Interface Address: h584 Bits [5:0] Bits [7:6]: W2 - Credit register. (Default 4'h04) Reserved
10.7.133 QOSC6E - CREDIT_C3_G7
Serial Interface Address: h585 Bits [5:0] Bits [7:6]: W3 - Credit register. (Default 4'h04) Reserved
10.7.134 QOSC6F - CREDIT_C4_G7
Serial Interface Address: h586 Bits [5:0] Bits [7:6]: W4 - Credit register. (Default 4'h04) Reserved
10.7.135 QOSC70 - CREDIT_C5_G7
Serial Interface Address: h587 Bits [5:0] Bits [7:6]: W5 - Credit register. (Default 5'h8) Reserved
Zarlink Semiconductor Inc.
85
MVTX2803
10.7.136 QOSC71- CREDIT_C6_G7
Serial Interface Address: h588 Bits [5:0] W6 - Credit register. (Default 5'h8)
Data Sheet
10.7.137 QOSC72- CREDIT_C7_G7
Serial Interface Address: h589 Bits [5:0] Bits [7:6]: W7 - Credit register. (Default 5'h10) Reserved
QOSC6B through QOSC72 represents the set of WFQ parameters (see section 7.5) for Gigabit port 7. The granularity of the numbers (bits [5:0]) is 1, and their sum must be 64. QOSC6B corresponds to W0, and QOSC72 corresponds to W7.
Class 6 Shaper Control Port G0
10.7.138 QOSC73 - TOKEN_RATE_G0
Serial Interface Address: h58A Bits [7:0] Bytes allow to transmit every frame time (0.512usec) when regulated by Shaper logic. (Default: 8'h08)
10.7.139 QOSC74 - TOKEN_LIMIT_G0
Serial Interface Address: h58B 1Bits [7:0] Bytes allow to continue transmit out when regulated by Shaper logic. (16byte/unit) (Default: 8'hC0)
QOSC73 and QOSC74 correspond to parameters from section 7.6 on the shaper for EF traffic. QOSC73 is an integer less than 64, with granularity 1. QOSC74 is the programmed maximum value of the counter (maximum burst size). This value is expressed in multiples of 16. QOSC73 and QOSC74 apply to Gigabit port 0. Register QOSC39-CREDIT_C6_G0 programs the peak rate. See QoS application note for more information.
Class 6 Shaper Control Port G1
10.7.140 QOSC75 - TOKEN_RATE_G1
Serial Interface Address: h58C Bits [7:0] Bytes allow to transmit every frame time (0.512usec) when regulated by Shaper logic. (Default: 8'h08)
86
Zarlink Semiconductor Inc.
Data Sheet
10.7.141 QOSC76 - TOKEN_LIMIT_G1
Serial Interface Address: h58D Bits [7:0]
MVTX2803
Bytes allow to continue transmit out when regulated by Shaper logic. (16byte/unit) (Default: 8'hC0)
QOSC75 and QOSC76 correspond to parameters from section 7.6 on the shaper for EF traffic. QOSC75 is an integer less than 64, with granularity 1. QOSC76 is the programmed maximum value of the counter (maximum burst size). This value is expressed in multiples of 16. QOSC75 and QOSC76 apply to Gigabit port 1. Register QOSC41-CREDIT_C6_G1 programs the peak rate. See QoS application note for more information.
Class 6 Shaper Control Port G2
10.7.142 QOSC77 - TOKEN_RATE_G2
Serial Interface Address: h58E Bits [7:0] Bytes allow to transmit every frame time (0.512usec) when regulated by Shaper logic. (Default: 8'h08)
10.7.143 QOSC78 - TOKEN_LIMIT_G2
Serial Interface Address: h58F Bits [7:0] Bytes allow to continue transmit out when regulated by Shaper logic. (16byte/unit) (Default: 8'hC0)
QOSC77 and QOSC78 correspond to parameters from section 7.6 on the shaper for EF traffic. QOSC77 is an integer less than 64, with granularity 1. QOSC78 is the programmed maximum value of the counter (maximum burst size). This value is expressed in multiples of 16. QOSC77 and QOSC78 apply to Gigabit port 2. Register QOSC49-CREDIT_C6_G2 programs the peak rate. See QoS application note for more information.
Class 6 Shaper Control Port G3
10.7.144 QOSC79 - TOKEN_RATE_G3
Serial Interface Address: h590 Bits [7:0] Bytes allow to transmit every frame time (0.512usec) when regulated by Shaper logic. (Default: 8'h08)
Zarlink Semiconductor Inc.
87
MVTX2803
10.7.145 QOSC7A - TOKEN_LIMIT_G3
Serial Interface Address: h591 Bits [7:0]
Data Sheet
Bytes allow to continue transmit out when regulated by Shaper logic. (16byte/unit) (Default: 8'hC0)
QOSC79 and QOSC7A correspond to parameters from section 7.6 on the shaper for EF traffic. QOSC79 is an integer less than 64, with granularity 1. QOSC7A is the programmed maximum value of the counter (maximum burst size). This value is expressed in multiples of 16. QOSC79 and QOSC7A apply to Gigabit port 3. Register QOSC51-CREDIT_C6_G3 programs the peak rate. See QoS application note for more information.
Class 6 Shaper Control Port G4
10.7.146 QOSC7B - TOKEN_RATE_G4
Serial Interface Address: h592 Bits [7:0] Bytes allow to transmit every frame time (0.512usec) when regulated by Shaper logic. (Default: 8'h08)
10.7.147 QOSC7C - TOKEN_LIMIT_G4
Serial Interface Address: h593 Bits [7:0] Bytes allow to continue transmit out when regulated by Shaper logic. (16byte/unit) (Default: 8'hC0)
QOSC7B and QOSC7C correspond to parameters from section 7.6 on the shaper for EF traffic. QOSC7B is an integer less than 64, with granularity 1. QOSC7C is the programmed maximum value of the counter (maximum burst size). This value is expressed in multiples of 16. QOSC7B and QOSC7C apply to Gigabit port 4. Register QOSC59-CREDIT_C6_G4 programs the peak rate. See QoS application note for more information.
Class 6 Shaper Control Port G5
10.7.148 QOSC7D - TOKEN_RATE_G5
Serial Interface Address: h594 Bits [7:0] Bytes allow to transmit every frame time (0.512usec) when regulated by Shaper logic. (Default: 8'h08)
88
Zarlink Semiconductor Inc.
Data Sheet
10.7.149 QOSC7E - TOKEN_LIMIT_G5
Serial Interface Address: h595 Bits [7:0]
MVTX2803
Bytes allow to continue transmit out when regulated by Shaper logic. (16byte/unit) (Default: 8'hC0)
QOSC7D and QOSC7E correspond to parameters from section 7.6 on the shaper for EF traffic. QOSC7D is an integer less than 64, with granularity 1. QOSC7E is the programmed maximum value of the counter (maximum burst size). This value is expressed in multiples of 16. QOSC7D and QOSC7E apply to Gigabit port 5. Register QOSC60-CREDIT_C6_G5 programs the peak rate. See QoS application note for more information.
Class 6 Shaper Control Port G6
10.7.150 QOSC7F - TOKEN_RATE_G6
Serial Interface Address: h596 Bits [7:0] Bytes allow to transmit every frame time (0.512usec) when regulated by Shaper logic. (Default: 8'h08)
10.7.151 QOSC80 - TOKEN_LIMIT_G6
Serial Interface Address: h597 Bits [7:0] Bytes allow to continue transmit out when regulated by Shaper logic. (16byte/unit) (Default: 8'hC0)
QOSC7F and QOSC80 correspond to parameters from section 7.6 on the shaper for EF traffic. QOSC7F is an integer less than 64, with granularity 1. QOSC80 is the programmed maximum value of the counter (maximum burst size). This value is expressed in multiples of 16. QOSC7F and QOSC80 apply to Gigabit port 6. Register QOSC69-CREDIT_C6_G6 programs the peak rate. See QoS application note for more information.
Class 6 Shaper Control Port G7
10.7.152 QOSC81 - TOKEN_RATE_G7
Serial Interface Address: h598 Bits [7:0] Bytes allow to transmit every frame time (0.512usec) when regulated by Shaper logic. (Default: 8'h08)
Zarlink Semiconductor Inc.
89
MVTX2803
10.7.153 QOSC82 - TOKEN_LIMIT_G7
Serial Interface Address: h599 Bits [7:0]
Data Sheet
Bytes allow to continue transmit out when regulated by Shaper logic. (16byte/unit) (Default: 8'hC0)
QOSC81 and QOSC82 correspond to parameters from section 7.6 on the shaper for EF traffic. QOSC81 is an integer less than 64, with granularity 1. QOSC82 is the programmed maximum value of the counter (maximum burst size). This value is expressed in multiples of 16. QOSC81 and QOSC82 apply to Gigabit port 7. Register QOSC6F-CREDIT_C6_G7 programs the peak rate. See QoS application note for more information
10.7.154 RDRC0 - WRED Rate Control 0
I2C Address: h085, Serial Interface Address: h59A Accessed by Serial Interface and I2C (R/W) 7 X Rate
4
3
Y Rate
0
Bits [7:4]: Bits[3:0]:
Corresponds to the percentage X% in Chapter 7. Used for random early drop. Granularity 6.25%. (Default: 4'h8) Corresponds to the percentage Y% in Chapter 7. Used for random early drop. Granularity 6.25%.(Default: 4'hE)
10.7.155 RDRC1 - WRED Rate Control 1
I2C Address: h086, Serial Interface Address: h59B Accessed by Serial Interface and I2C (R/W) 7 Z Rate
4
3
B Rate
0
Bits [7:4]: Bits[3:0]:
Corresponds to the percentage Z% in Chapter 7. Used for random early drop. Granularity 6.25%.%. (Default: 4'h6) Corresponds to the best effort frame drop percentage B%, when shared pool is all in use and destination port best effort queue reaches UCC. Used for random early drop. Granularity 6.25%.%. (Default: 4'h8)
90
Zarlink Semiconductor Inc.
Data Sheet
10.8 10.8.1 Group 6 Address - MISC Group MII_OP0 - MII Register Option 0
MVTX2803
I2C Address: h0B1, Serial Interface Address: h600 Accessed by serial interface and I2C (R/W) 7 Hfc 6 1prst 5 NP 4 Vendor Spc. Reg Addr 0
Bit [7]:
*
Half duplex flow control no default enable (Do not use half duplex mode) 0 = Half duplex flow control always enable 1 = Half duplex flow control by negotiation
Bit[6]: Bit [5] *
Link partner reset auto-negotiate disable Next page enable 1: enable 0: disable
Bit[4:0]:
Vendor specified link status register address (null value means don't use it) (Default 00)
10.8.2
MII_OP1 - MII Register Option 1
I2C Address: h0B2, Serial Interface Address: h601 Accessed by serial interface and I2C (R/W) 7 Speed bit location Bits[3:0]: Bits [7:4]: 4 3 Duplex bit location 0
Duplex bit location in vendor specified register Speed bit location in vendor specified register (Default 00)
10.8.3
FEN - Feature Register
I2C Address: h0B3, Serial Interface Address: h602 Accessed by serial interface and I2C (R/W) 7 DML 6 MII 5 3 2 DS 1 0
Zarlink Semiconductor Inc.
91
MVTX2803
Bits [1:0]: Bit [2]: * Reserved Support DS EF Code. (Default 0) 0 - Disable 1 - Enable (all ports) When 101110 is detected in DS field (TOS[7:2]), the frame priority is set for 110 and drop is set for 0. Bit [5:3]: Bit [6]: Reserved 0: Enable MII Management State Machine (Default 0) 1: Disable MII Management State Machine Bit [7]: 0: Enable using MCT Link List structure 1: Disable using MCT Link List structure
Data Sheet
10.8.4
MIIC0 - MII Command Register 0
Serial Interface Address:h603 Accessed by serial interface (R/W) Bit [7:0] MII Data [7:0] Note: Before programming MII command: set FEN[6], check MIIC3, making sure no RDY, and no VALID; then program MII command.
10.8.5
MIIC1 - MII Command Register 1
Serial Interface Address:h604 Accessed by serial interface (R/W) Bit [7:0] MII Data [15:8] Note: Before programming MII command: set FEN[6], check MIIC3, making sure no RDY and no VALID; then program MII command.
10.8.6
MIIC2 - MII Command Register 2
Serial Interface Address:h605 Accessed by serial interface (R/W) 7 6 Mii OP 5 4 Register address 0
Bits [4:0]: Bit [6:5]
REG_AD - Register PHY Address OP - Operation code "10" for read command and "01" for write command
Note: Before programming MII command: set FEN[6], check MIIC3, making sure no RDY and no VALID; then program MII command.
92
Zarlink Semiconductor Inc.
Data Sheet
10.8.7 MIIC3 - MII Command Register 3
MVTX2803
Serial Interface Address:h606 Accessed by serial interface (R/W) 7 Rdy
6
Valid
5
4
PHY address
0
Bits [4:0]: Bit [6] Bit [7]
PHY_AD - 5 Bit PHY Address VALID - Data Valid from PHY (Read Only) RDY - Data is returned from PHY (Ready Only)
Note: Before programming MII command: set FEN[6], check MIIC3, making sure no RDY and no VALID; then program MII command.
10.8.8
MIID0 - MII Data Register 0
Serial Interface Address:h607 Accessed by serial interface (RO) Bit [7:0] MII Data [7:0]
10.8.9
MIID1 - MII Data Register 0
Serial Interface Address:h608 Accessed by serial interface (RO) Bit [7:0] MII Data [15:8]
10.8.10 LED Mode - LED Control
I2C Address:h0B4; Serial Interface Address:h609 Accessed by serial interface and I2C (R/W) 7 lpbk
6
5
Out Pattern
43
2
1
0
Clock rate
Hold Time
Bit[1:0]
*
Sample hold time (Default 2'b00) 2'b00- 8 msec 2'b01- 16 msec 2'b10- 32 msec 2'b11- 64 msec
Zarlink Semiconductor Inc.
93
MVTX2803
Bit[3:2] * LED clock speed (serial mode) (Default 2'b10) 2'b00- sclk/128 2'b01- sclk/256 2'b10- sclk/1024 2'b11- sclk/2048 * LED clock speed (parallel mode) (Default 2'b10) 2'b00- sclk/1024 2'b01- sclk/4096 2'b10- sclk/2048 2'b11- sclk/8192 Bit[5:4] LED indicator out pattern (Default 2'b11)
Data Sheet
2'b00- Normal output, LED signals go straight out, no logical combination 2'b01- 4 bi-color LED mode 2'b10- 3 bi-color LED mode 2'b11- programmable mode 1. Normal mode: LED_BYTEOUT_[7]:Collision (COL) LED_BYTEOUT_[6]:Full duplex (FDX) LED_BYTEOUT_[5]:Speed[1] (SP1) LED_BYTEOUT_[4]:Speed[0] (SP0) LED_BYTEOUT_[3]:Link (LNK) LED_BYTEOUT_[2]:Rx (RXD) LED_BYTEOUT_[1]:Tx (TXD) LED_BYTEOUT_[0]:Flow Control (FC) 2. 4 bi-color LED mode LED_BYTEOUT_[7]:COL LED_BYTEOUT_[6]:1000FDX LED_BYTEOUT_[5]:1000HDX LED_BYTEOUT_[4]:100FDX LED_BYTEOUT_[3]:100HDX LED_BYTEOUT_[2]:10FDX LED_BYTEOUT_[1]:10HDX LED_BYTEOUT_[0]:ACT Note: All output qualified by Link signal
94
Zarlink Semiconductor Inc.
Data Sheet
3. 3 bi-color LED mode: LED_BYTEOUT_[7]:COL LED_BYTEOUT_[6]:LNK LED_BYTEOUT_[5]:FC LED_BYTEOUT_[4]:SPD1000 LED_BYTEOUT_[3]:SPD100 LED_BYTEOUT_[2]:FDX LED_BYTEOUT_[1]:HDX LED_BYTEOUT_[0]:ACT Note: All output qualified by Link signal 4. Programmable mode: LED_BYTEOUT_[7]:Link
MVTX2803
LED_BYTEOUT_[6:0]:Defined by the LEDSIG6 ~ LEDSIG0 programmable registers. Note: All output qualified by Link signal Bit[6]: Bit[7]: Reserved. Must be '0' Enable internal loop back. When this bit is set to '1' all ports work in internal loop back mode. For normal operation must be '0'.
10.8.11 CHECKSUM - EEPROM Checksum
I2C Address h0C5, Serial Interface Address:h60B Accessed by serial interface and I2C (R/W)
Bit [7:0]:
(Default 00) Before requesting that the MVTX2603AG updates the EEPROM device, the correct checksum needs to be calculated and written into this checksum register. The checksum formula is:
FF
i2C register = 0
i=0
After booting cicle the MVTX2603AG calculates the checksum. If the checksum is not zeroed the MVTX2803AG does not start.
Zarlink Semiconductor Inc.
95
MVTX2803
10.8.12 LED User 10.8.13 LEDUSER0
I2C Address h0BB, Serial Interface Address:h60C Accessed by serial interface and I2C (R/W) 7 LED USER0 0
Data Sheet
Bit [7:0]:
(Default 00) Content will send out by LED serial logic
10.8.14 LEDUSER1
I2C Address h0BC, Serial Interface Address:h60D Accessed by serial interface and I2C (R/W) 7 LED USER1 0
Bit [7:0]:
(Default 00) Content will send out by LED serial logic
10.8.15 LEDUSER2/LEDSIG2
I2C Address h0BD, Serial Interface Address:h60E Accessed by serial interface and I2C (R/W) In serial mode: 7 LED USER2 0
Bit [7:0]:
(Default 00) Content will be sent out by LED serial shift logic
96
Zarlink Semiconductor Inc.
Data Sheet
In parallel mode: this register is used for programming the LED pin - led_byteout_[2] 7 COL FDX SP1 4 SP0 3 COL FDX SP1 0 SP0
MVTX2803
Bit [3:0]:
(Default 4'H0) Signal polarity: 0: not invert polarity (high true) 1: invert polarity
Bit [7:4]
(Default 4'H8) Signal Select: 0: not select 1: select the corresponding bit When bits get selected, the led_byteout_[2] = AND (all selected bits)
10.8.16 EDUSER3/LEDSIG3
I2C Address:h0BE, Serial Interface Address:h60F Access by CPU, serial interface (R/W) In serial mode:
7
0
LED USER3 Bit [7:0]: (Default 8'H33) Content will be sent out by LED serial shift logic.
In parallel mode: this register is used for programming the LED pin - led_byteout_[3]
7
4 FDX SP1 SP0
3 COL FDX SP1
0 SP0
COL
Bit [3:0]:
(Default 4'H3) Signal polarity: 0: not invert polarity (high true) 1: invert polarity
Bit [7:4]
(Default 4'H3) Signal Select: 0: not select 1: select the corresponding bit When bits get selected, the led_byteout_[3] = AND (all selected bits)
Zarlink Semiconductor Inc.
97
MVTX2803
10.8.17 LEDUSER4/LEDSIG4
I2C Address:h0BF, Serial Interface Address:h610 Access by CPU, serial interface (R/W)
7
Data Sheet
0
LED USER4
Bit [7:0]
(Default 8'H32) Content will be sent out by LED serial shift logic.
In parallel mode: this register is used for programming the LED pin - led_byteout_[4]
7
4 FDX SP1 SP0
3 COL FDX SP1
0 SP0
COL
Bit [3:0]
(Default 4'H2) Signal polarity: 0: not invert polarity (high true) 1: invert polarity
Bit [7:4]
(Default 4'H3) Signal Select: 0: not select 1: select the corresponding bit When bits get selected, the led_byteout_[4] = AND (all selected bits)
10.8.18 LEDUSER5/LEDSIG5
I2C Address:h0C0, Serial Interface Address:h611 Access by CPU, serial interface (R/W)
7
0
LED USER5
Bit [7:0]
(Default 8'H20) Content will be sent out by LED serial shift logic.
In parallel mode: this register is used for programming the LED pin - led_byteout_[5]
7
4 FDX SP1 SP0
3 COL FDX SP1
0 SP0
COL
98
Zarlink Semiconductor Inc.
Data Sheet
Bit [3:0] (Default 4'H0) Signal polarity: 0: not invert polarity (high true) 1: invert polarity Bit [7:4] (Default 4'H2) Signal Select: 0: not select 1: select the corresponding bit
MVTX2803
When bits get selected, the led_byteout_[5] = AND (all selected bits)
10.8.19 LEDUSER6/LEDSIG6
I2C Address:h0C1, Serial Interface Address:h612 Access by CPU, serial interface (R/W)
7
0
LED USER6
Bit [7:0]
(Default 8'H40) Content will be sent out by LED serial shift logic.
In parallel mode: this register is used for programming the LED pin - led_byteout_[6]
7
4 FDX SP1 SP0
3 COL FDX SP1
0 SP0
COL
Bit [3:0]
(Default 4'B0000) Signal polarity: 0: not invert polarity (high true) 1: invert polarity
Bit [7:4]
(Default 4'b0100) Signal Select: 0: not select 1: select the corresponding bit When bits get selected, the led_byteout_[6] = AND (all selected bits), or the polarity of led_byteout_[6] is controlled by LEDSIG1_0[3]
Zarlink Semiconductor Inc.
99
MVTX2803
10.8.20 LEDUSER7/LEDSIG1_0
I2C Address:h0C2, Serial Interface Address:h613 Access by CPU, serial interface (R/W)
7
Data Sheet
0
LED USER7
Bit [7:0]
(Default 8'H61) Content will be sent out by LED serial shift logic.
In parallel mode: this register is used for programming the LED pin - led_byteout_[2]
7
4 RX TX FC
3 P6 RX TX
0 FC
GP
Bit [7] *
(Default 1'B0) Global output polarity: this bit controls the output polarity of all led_byteout_ and led_port_sel pins. 0: no invert polarity - (led_byteout_[7:0] are high activated, led_port_sel[9:0] are low activated) 1: invert polarity - (led_byteout_[7:0] are low activated, led_port_sel[9:0] are high activated)
Bit [6:4]
(Default 3'B110) Signal Select: 0: not select 1: select the corresponding bit When bits get selected, the led_byteout_[6] = OR (all selected bits)
Bit[3]
(Default 1'B0) Polarity control of led_byteout_[6] 0: not invert 1: invert
Bit [2:0]
(Default 3'b001) Signal Select: 0: not select 1: select the corresponding bit When bits get selected, the led_byteout_[0] = OR (all selected bits)
100
Zarlink Semiconductor Inc.
Data Sheet
10.8.21 MIINP0 - MII Next Page Data Register 0
I2C Address:h0C3, Serial Interface Address:h614 Access by CPU and serial interface only (R/W) Bit [7:0] MII next page Data [7:0]
MVTX2803
10.8.22 MIINP1 - MII Next Page Data Register 1
I2C Address:h0C4, Serial Interface Address:h615 Access by CPU and serial interface only (R/W) Bit [7:0] MII next page Data [15:8]
10.9 10.9.1
Group F Address - CPU Access Group GCR-Global Control Register
Serial Interface Address: hF00 Accessed by serial interface. (R/W) 7 4 3 Reset 2 Bist 1 SR 0 SC
Bit [0]:
Store configuration (Default = 0) Write `1' followed by `0' to store configuration into external EEPROM
Bit[1]:
Store configuration and reset (Default = 0) Write `1' to store configuration into external EEPROM and reset chip
Bit[2]:
Start BIST (Default = 0) Write `1' followed by `0' to start the device's built-in self-test. The result is found in the DCR register.
Bit[3]:
Soft Reset (Default = 0) Write `1' to reset the chip
Bit[7:4]:
Reserved
Zarlink Semiconductor Inc.
101
MVTX2803
10.9.2 DCR-Device Status and Signature Register
Data Sheet
Serial Interface Address: hF01 Accessed by serial interface. (RO) 7 Revision
6
5
Signature
4
3
RE
2
BinP
1
BR BW
0
Bit [0]:
1 - Busy writing configuration to I2C 0 - Not Busy writing configuration to I2C
Bit[1]:
1 - Busy reading configuration from I2C 0 - Not Busy reading configuration from I2C
Bit[2]:
1 - BIST in progress 0 - BIST not running
Bit[3]:
1 - RAM Error 0 - RAM OK
Bit[5:4]:
Device Signature 00 - 4 Ports Device, non-management mode 01 - 8 Ports Device, non-management mode 10 - 4 Ports Device, management mode possible (need to install CPU) 11 - 8 Ports Device, management mode possible (need to install CPU)
Bit [7:6]:
Revision
10.9.3
DCR01-Giga port status
Serial Interface Address: hF02 Accessed by serial interface. (RO) 7 CIC Bit [1:0]:
6
4
3 GIGA1
2
1
0
GIGA0
Giga port 0 strap option 00 - 100Mb MII mode 01 - Reserved 10 - GMII 11 - PCS
102
Zarlink Semiconductor Inc.
Data Sheet
Bit[3:2] Giga port 1 strap option 00 - 100Mb MII mode 01 - Reserved 10 - GMII 11 - PCS Bit [7] Chip initialization completed
MVTX2803
Note: DCR01[7], DCR23[7], DCR45[7] and DCR67[7] have the same function.
10.9.4
DCR23-Giga port status
Serial Interface Address: hF03 Accessed by CPU and serial interface. (RO) 7 CIC
6
4
3 GIGA3
2
1
0
GIGA2
Bit [1:0]:
Giga port 2 strap option 00 - 100Mb MII mode 01 - Reserved 10 - GMII 11 - PCS
Bit[3:2]
Giga port 3 strap option 00 - 100Mb MII mode 01 - Reserved 10 - GMII 11 - PCS
Bit [7]
Chip initialization completed
10.9.5
DCR45-Giga port status
Serial Interface Address: hF04 Accessed by CPU and serial interface. (RO) 7 CIC
6
4
3 GIGA5
2
1
0
GIGA4
Zarlink Semiconductor Inc.
103
MVTX2803
Bit [1:0]: Giga port 4 strap option 00 - 100Mb MII mode 01 - Reserved 10 - GMII 11 - PCS Bit[3:2] Giga port 5 strap option 00 - 100Mb MII mode 01 - Reserved 10 - GMII 11 - PCS Bit [7] Chip initialization completed
Data Sheet
10.9.6
DCR67-Giga port status
Serial Interface Address: hF05 Accessed by CPU and serial interface. (RO) 7 CIC
6
4
3 GIGA7
2
1
0
GIGA6
Bit [1:0]:
Giga port 6 strap option 00 - 100Mb MII mode 01 - Reserved 10 - GMII 11 - PCS
Bit[3:2]
Giga port 7 strap option 00 - 100Mb MII mode 01 - Reserved 10 - GMII 11 - PCS
Bit [7]
Chip initialization completed
104
Zarlink Semiconductor Inc.
Data Sheet
10.9.7 DPST - Device Port Status Register
MVTX2803
Serial Interface Address:hF06 Accessed by CPU and serial interface (R/W) Bit[2:0]: Read back index register. This is used for selecting what to read back from DTST. (Default 00) 3'B000 - Port 0 Operating mode and Negotiation status 3'B001 - Port 1 Operating mode and Negotiation status 3'B010 - Port 2 Operating mode and Negotiation status 3'B011 - Port 3 Operating mode and Negotiation status 3'B100 - Port 4 Operating mode and Negotiation status 3'B101 - Port 5 Operating mode and Negotiation status 3'B110 - Port 6 Operating mode and Negotiation status 3'B111 - Port 7 Operating mode and Negotiation status
10.9.8
DTST - Data Read Back Register
Serial Interface Address: hF07 Accessed by CPU and serial interface (RO) 7 MD 6 InfoDet 5 SigDet 4 Giga 3 lnkdn 2 FE 1 Fdpx 0 Fc_en
This register provides various internal information as selected in DPST bit[2:0] Bit[0]: Bit[1]: Bit[2]: Bit[3]: Bit[4]: Bit[5]: Bit[6]: Bit[7]: Flow control enabled Full duplex port Fast ethernet port (if not giga) Link is down GIGA port Signal detect (when PCS interface mode) Pipe signal detected (pipe mode only) Module detected (for hot swap purpose)
Zarlink Semiconductor Inc.
105
MVTX2803
11.0
11.1
1 2
Data Sheet
BGA and Ball Signal Description
BGA Views Views (Top-View)
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
AVD NC9 SCA LB_D LB_D LB_D LB_D LB_D LB_D LB_D LB_D LB_D LB_D LB_D LB_D S_CL LB_D LB_A LB_A LB_A LB_A B_A[ B_A[ B_A[ B_A[ B_OE B_D[ B_D[ NC4 NC3 D N EN [0] [4] [5] [10] [16] [19] [26] [31] [32] [36] [40] [45] K [60] [3] [7] [11] [15] 16] 12] 7] 2] # 27] 26] DEV_ LA_D NC7 LB_D LB_D LB_D LB_D LB_D LB_D LB_D LB_C LB_D LB_D LB_D LB_D LB_D LB_D LB_D LB_A LB_A LB_A B_A[ B_A[ B_A[ B_A[ B_W B_D[ DEV_ NC5 B_D[2 CF[0] [0] [1] [3] [6] [12] [17] [20] [28] S0# [33] [37] [41] [47] [54] [58] [62] [6] [10] [13] 17] 13] 8] 3] E# 30] CFG[ 5] LA_D LA_C LA_D NC6 LB_D LB_D LB_D LB_D LB_D LB_D LB_R LB_D LB_D LB_D LB_D LB_D LB_D LB_D LB_A LB_A LB_A B_A[ B_A[ B_A[ B_A[ B_A[ B_D[ AVD B_CL B_D[2 [1] LK [3] [2] [8] [15] [18] [21] [29] W # [34] [39] [43] [48] [52] [57] [61] [4] [8] [12] 18] 14] 11] 5] 4] 28] D K 2] LA_D LA_D LA_D NC8 LB_C LB_D LB_D LB_D LB_D LB_D LB_D LB_D LB_D LB_D LB_D LB_D LB_D LB_D LB_A LB_A LB_A LB_A B_A[ B_A[ B_AD NC2 B_D[ B_D[ B_D[ B_D[2 [2] [5] [9] LK [9] [13] [23] [22] [24] [25] [35] [42] [44] [50] [51] [55] [63] [14] [18] [16] [19] 9] 10] SC# 29] 24] 18] 1] LA_D LA_D LA_D LA_D AGN LB_D LB_D LB_D LB_D LB_D LB_C LB_D LB_D LB_D LB_D LB_D LB_D LB_A LB_A LB_A LB_A B_A[ B_A[ B_D[ AGN B_D[ B_D[ B_D[ B_D[ B_D[1 [8] [7] [6] [4] D [7] [14] [11] [27] [30] S1# [38] [46] [49] [53] [56] [59] [5] [9] [17] [20] 15] 6] 31] D 17] 23] 19] 16] 4] LA_D LA_D LA_D LA_D LA_D VSS VSS [10] [11] [12] [13] [14] LA_D LA_D LA_D LA_D LA_D VDD [15] [16] [19] [18] [17] LA_D LA_D LA_D LA_D LA_D [20] [21] [22] [29] [24] LA_D LA_D LA_D LA_D LA_D VDD [23] [25] [26] [27] [31] LA_D LA_D LA_C LA_D LA_D VDD [28] [30] S0# [37] [33] L LA_C LA_R LA_D LA_D LA_D S1# W # [32] [46] [41] LA_D LA_D LA_D LA_D LA_D VD33 [34] [35] [36] [53] [48] LA_D LA_D LA_D LA_D LA_D VD33 [38] [40] [42] [61] [56] LA_D LA_D LA_D LA_A LA_D VD33 [43] [44] [45] [4] [39] LA_D LA_D LA_D LA_D LA_D VSS [49] [50] [51] [52] [47] LA_D LA_D LA_D LA_D LA_A VSS [58] [57] [55] [54] [7] LA_D LA_D LA_D LA_D LA_A VD33 [63] [62] [60] [59] [11] LA_A LA_A LA_A LA_A LA_A VD33 [6] [5] [3] [14] [18] LA_A LA_A LA_A LA_A G0_T VD33 [10] [9] [8] [20] XD[1] LA_A LA_A LA_A G0_C G0_T [15] [13] [12] RS/L XD[4] LA_A LA_A LA_A GRE G0_T VDD [19] [17] [16] FC[0] XD[7] MIITX G0_T G0_T G0_T G0_T VDD CK[0] XD[2] XD[0] XCLK X E G0_R G0_T G0_T G0_R G0_R XCLK XD[5] XD[3] XD[2] XD[6] G0_R G0_T G0_C G0_T G0_ XD[0] X EN OL XD[6] RX VSS VDD VDD VD33 VD33 VD33 VSS VSS VD33 VD33 VD33 VDD VDD VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDD VDD VD33 VD33 VD33 VSS VSS VD33 VD33 VD33 VDD VDD VSS VSS NC1 B_D[ B_D[ B_D[ B_D[1 9] 10] 11] 2] VDD B_D[ B_D[ B_D[ B_D[ B_D[7] 20] 4] 3] 6] B_D[ B_D[ P_IN B_D[ B_D[2] 15] 8] T# 1] VDD B_D[ P_A[ P_A[ P_W P_RD# 13] 1] 2] E# VDD B_D[ P_D[ P_D[ P_D[ P_D[1 5] 15] 11] 12] 3] P_CS P_D[ P_D[ P_D[ P_D[1 # 14] 7] 8] 0] VD33 P_A[ B_D[ P_D[ P_D[ P_D[5] 0] 0] 3] 4] VD33 P_D[ P_D[ P_D[ P_D[ P_D[2] 6] 9] 0] 1] VD33 T_D[ T_D[ T_D[ T_D[ T_D[14 15] 11] 12] 13] ] VSS T_D[ T_D[ T_D[ T_D[ T_D[9] 10] 5] 7] 8] VSS T_D[ T_D[ T_D[ T_D[ T_D[0] 6] 4] 2] 1] VD33 S_R T_D[ TMO TMO RESO ST# 3] DE[1] DE[0] UT# VD33 G7_ G7_R LESY LE_C LE_DO RXD[ X ER NO# LK0 VD33 G7_ G7_R G7_R G7_R G7_RX RXD[ XD[1] X DV XD[6] D[5] G7_T G7_T G7_R G7_R G7_RX XD[6] X EN XD[4] XD[2] D[0] VDD G7_T G7_T G7_C G7_R MIITX XD[0] XD[3] OL XCLK CK[7] VDD G6_ G7_T G7_T G7_T G7_TX RXD[ X ER XD[7] XD[5] D[4] G6_R G6_R G7_T G7_T G7_C XD[2] XD[4] XD[2] XD[1] RS/L VDD G6_ G6_R G7_T GRE G6_RX RXD[ X ER XCLK FC[7] DV VSS VSS G6_T G6_R G6_R G6_R G6_RX XD[7] XD[6] XD[5] XD[3] D[1]
G0_R G0_R G0_R G0_R G1_T VSS VDD XD[5] XD[4] XD[3] XD[1] XD[0]
G0_R G0_R GRE G1_R G1_R G1_R G2_T G2_T G2_R G2_R G2_R G3_T G3_T G3_C G3_R G3_R IND_ G3_R G3_R G4_T G4_R G4_R G5_T G5_T G5_T G5_R G6_R G6_T G6_C G6_TX XD[7] X ER FC[1] XD[2] XD[5] XD[7] XD[0] XD[7] XD[2] XD[4] XD[5] XD[1] XD[6] OL XD[3] XD[6] CM XD[4] X ER XD[3] XD[1] XD[4] XD[2] XD[4] X ER XD[5] XCLK XD[6] OL ER G1_T G1_T G1C G1_T G2_T G1_R G2_T G2_T G2_R G2_R G2_R G2_R G3_T G3_R G3_R G3_R GRE M_M G4_T G4_R G4_R G4_R G5_C G5_T MIITX G5_R G6_T G6_T G6_T G6_TX XD[1] XCLK RS/L XD[7] XCLK XD[4] XD[4] XD[3] XD[3] XCLK XD[7] X ER X EN XD[0] XD[5] XD[7] FC[4] DIO XD[1] XD[5] XD[6] XD[7] RS/L XD[5] CK[5] XD[1] XD[3] XD[4] X EN D[5] G1_T G1_T MIITX G1_R G1_R G2C MIITX G2_T G2_R G2_R G3_T G3_T G3_T G3_R G3_R G3_R G4_T G4_T G4_T G4_T G4_R G4_R G4_R G5_T G5_T G5_R G5_R G6_T G6_T G6_TX XD[2] XD[3] CK[1] XD[0] XCLK RS/L CK[2] X EN XD[1] X DV XCLK XD[3] XD[5] XCLK XD[2] X DV XCLK XD[4] XD[6] X ER XCLK X DV X ER XD[3] X EN XD[3] XD[6] XD[1] XD[2] CLK G1_T G1_T G1_T G1_C G1_R GRE G2_T G2_T G2_R G2_R GRE G3_T MIITX G3_T G3_R M_M G4_T G4_T G4_T G4_R G4_C GRE G5_T G5_T G5_R G5_C G5_R G5_R G6_C G6_TX XD[5] XD[4] X ER OL XD[6] FC[2] XD[2] XD[6] XD[0] XD[6] FC[3] XD[2] CK[3] X ER XD[1] DC XD[0] XD[5] XD[7] XD[0] OL FC[5] XD[0] XD[6] XD[0] OL XD[4] X ER RS/L D[0] AK G1_T G1_T G1_R G1_R G1_R G1_R G2_T G2_T G2_T G2_C G3_C G3_T G3_T G3_T CM_ G4C G4_T MIITX G4_T G4_R G4_R G5_T G5_T G5_T G5_R G5_R G5_R G5_R MIITX GREF XD[6] X EN XD[1] XD[3] X DV X ER XD[1] XD[5] X ER OL RS/L XD[0] XD[4] XD[7] CLK RS/L XD[2] CK[4] X EN XD[2] XD[3] XCLK XD[1] XD[7] XD[2] XCLK XD[7] X DV CK[6] C[6]
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
106
Zarlink Semiconductor Inc.
Data Sheet
11.2
1
MVTX2803
Power and Ground Distribution
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
AVDD NC9 SCA LB_D LB_D LB_D LB_D LB_D LB_D LB_D LB_D LB_D LB_D LB_D LB_D S_CL LB_D LB_A LB_A LB_A LB_A B_A[ B_A[ B_A[ B_A[ B_OE B_D[ B_D[ NC4 NC3 N EN [0] [4] [5] [10] [16] [19] [26] [31] [32] [36] [40] [45] K [60] [3] [7] [11] [15] 16] 12] 7] 2] # 27] 26] DEV_C LA_D NC7 LB_D LB_D LB_D LB_D LB_D LB_D LB_D LB_C LB_D LB_D LB_D LB_D LB_D LB_D LB_D LB_A LB_A LB_A B_A[ B_A[ B_A[ B_A[ B_W B_D[ DEV_ NC5 B_D[ F[0] [0] [1] [3] [6] [12] [17] [20] [28] S0# [33] [37] [41] [47] [54] [58] [62] [6] [10] [13] 17] 13] 8] 3] E# 30] CFG[ 25] LA_D[1] LA_C LA_D NC6 LB_D LB_D LB_D LB_D LB_D LB_D LB_R LB_D LB_D LB_D LB_D LB_D LB_D LB_D LB_A LB_A LB_A B_A[ B_A[ B_A[ B_A[ B_A[ B_D[ AVD B_CL B_D[ LK [3] [2] [8] [15] [18] [21] [29] W# [34] [39] [43] [48] [52] [57] [61] [4] [8] [12] 18] 14] 11] 5] 4] 28] D K 22] LA_D[2] LA_D LA_D NC8 LB_C LB_D LB_D LB_D LB_D LB_D LB_D LB_D LB_D LB_D LB_D LB_D LB_D LB_D LB_A LB_A LB_A LB_A B_A[ B_A[ B_AD NC2 B_D[ B_D[ B_D[ B_D[ [5] [9] LK [9] [13] [23] [22] [24] [25] [35] [42] [44] [50] [51] [55] [63] [14] [18] [16] [19] 9] 10] SC# 29] 24] 18] 21] LA_D[8] LA_D LA_D LA_D AGN LB_D LB_D LB_D LB_D LB_D LB_C LB_D LB_D LB_D LB_D LB_D LB_D LB_A LB_A LB_A LB_A B_A[ B_A[ B_D[ AGN B_D[ B_D[ B_D[ B_D[ B_D[ [7] [6] [4] D [7] [14] [11] [27] [30] S1# [38] [46] [49] [53] [56] [59] [5] [9] [17] [20] 15] 6] 31] D 17] 23] 19] 16] 14] LA_D[1 LA_D LA_D LA_D LA_D VSS VSS 0] [11] [12] [13] [14] LA_D[1 LA_D LA_D LA_D LA_D VDD 5] [16] [19] [18] [17] LA_D[2 LA_D LA_D LA_D LA_D 0] [21] [22] [29] [24] LA_D[2 LA_D LA_D LA_D LA_D VDD 3] [25] [26] [27] [31] LA_D[2 LA_D LA_C LA_D LA_D VDD 8] [30] S0# [37] [33]
L
VDD VDD
VD33 VD33 VD33 VSS VSS VD33 VD33 VD33
VDD VDD
VSS VSS NC1 B_D[ B_D[ B_D[ B_D[ 9] 10] 11] 12] VDD B_D[ B_D[ B_D[ B_D[ B_D[ 20] 4] 3] 6] 7] B_D[ B_D[ P_IN B_D[ B_D[ 15] 8] T# 1] 2] VDD B_D[ P_A[ P_A[ P_W P_RD 13] 1] 2] E# # VDD B_D[ P_D[ P_D[ P_D[ P_D[ 5] 15] 11] 12] 13] P_CS P_D[ P_D[ P_D[ P_D[ # 14] 7] 8] 10] VD33 P_A[ B_D[ P_D[ P_D[ P_D[ 0] 0] 3] 4] 5]
LA_CS LA_R LA_D LA_D LA_D 1# W# [32] [46] [41] LA_D[3 LA_D LA_D LA_D LA_D VD33 4] [35] [36] [53] [48] LA_D[3 LA_D LA_D LA_D LA_D VD33 8] [40] [42] [61] [56] LA_D[4 LA_D LA_D LA_A LA_D VD33 3] [44] [45] [4] [39] LA_D[4 LA_D LA_D LA_D LA_D VSS 9] [50] [51] [52] [47] LA_D[5 LA_D LA_D LA_D LA_A VSS 8] [57] [55] [54] [7] LA_D[6 LA_D LA_D LA_D LA_A VD33 3] [62] [60] [59] [11] LA_A[6] LA_A LA_A LA_A LA_A VD33 [5] [3] [14] [18] LA_A[1 LA_A LA_A LA_A G0_T VD33 0] [9] [8] [20] XD[1] LA_A[1 LA_A LA_A G0_C G0_T 5] [13] [12] RS/L XD[4] LA_A[1 LA_A LA_A GRE G0_T VDD 9] [17] [16] FC[0] XD[7] MIITXC G0_T G0_T G0_T G0_T VDD K[0] XD[2] XD[0] XCLK X ER G0_RX G0_T G0_T G0_R G0_R CLK XD[5] XD[3] XD[2] XD[6] G0_RX G0_T G0_C G0_T G0_R VSS D[0] X EN OL XD[6] X DV G0_RX G0_R G0_R G0_R G1_T VSS VDD D[5] XD[4] XD[3] XD[1] XD[0] VDD VDD VD33 VD33 VD33 VSS VSS VD33 VD33 VD33 VDD VDD VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS
VD33 P_D[ P_D[ P_D[ P_D[ P_D[ 6] 9] 0] 1] 2] VD33 T_D[ T_D[ T_D[ T_D[ T_D[ 15] 11] 12] 13] 14] VSS T_D[ T_D[ T_D[ T_D[ T_D[ 10] 5] 7] 8] 9] VSS T_D[ T_D[ T_D[ T_D[ T_D[ 6] 4] 2] 1] 0] VD33 S_RS T_D[ TMO TMO RES T# 3] DE[1] DE[0] OUT# VD33 G7_R G7_R LESY LE_C LE_D XD[7] X ER NO# LK0 O VD33 G7_R G7_R G7_R G7_R G7_R XD[3] XD[1] X DV XD[6] XD[5] G7_T G7_T G7_R G7_R G7_R XD[6] X EN XD[4] XD[2] XD[0] VDD G7_T G7_T G7_C G7_R MIITX XD[0] XD[3] OL XCLK CK[7] VDD G6_R G7_T G7_T G7_T G7_T XD[7] X ER XD[7] XD[5] XD[4] G6_R G6_R G7_T G7_T G7_C XD[2] XD[4] XD[2] XD[1] RS/L VDD G6_R G6_R G7_T GRE G6_R XD[0] X ER XCLK FC[7] X DV VSS VSS G6_T G6_R G6_R G6_R G6_R XD[7] XD[6] XD[5] XD[3] XD[1]
G0_RX G0_R GRE G1_R G1_R G1_R G2_T G2_T G2_R G2_R G2_R G3_T G3_T G3_C G3_R G3_R IND_ G3_R G3_R G4_T G4_R G4_R G5_T G5_T G5_T G5_R G6_R G6_T G6_C G6_T D[7] X ER FC[1] XD[2] XD[5] XD[7] XD[0] XD[7] XD[2] XD[4] XD[5] XD[1] XD[6] OL XD[3] XD[6] CM XD[4] X ER XD[3] XD[1] XD[4] XD[2] XD[4] X ER XD[5] XCLK XD[6] OL X ER G1_TX G1_T G1C G1_T G2_T G1_R G2_T G2_T G2_R G2_R G2_R G2_R G3_T G3_R G3_R G3_R GRE M_M G4_T G4_R G4_R G4_R G5_C G5_T MIITX G5_R G6_T G6_T G6_T G6_T D[1] XCLK RS/L XD[7] XCLK XD[4] XD[4] XD[3] XD[3] XCLK XD[7] X ER X EN XD[0] XD[5] XD[7] FC[4] DIO XD[1] XD[5] XD[6] XD[7] RS/L XD[5] CK[5] XD[1] XD[3] XD[4] X EN XD[5] G1_TX G1_T MIITX G1_R G1_R G2C MIITX G2_T G2_R G2_R G3_T G3_T G3_T G3_R G3_R G3_R G4_T G4_T G4_T G4_T G4_R G4_R G4_R G5_T G5_T G5_R G5_R G6_T G6_T G6_T D[2] XD[3] CK[1] XD[0] XCLK RS/L CK[2] X EN XD[1] X DV XCLK XD[3] XD[5] XCLK XD[2] X DV XCLK XD[4] XD[6] X ER XCLK X DV X ER XD[3] X EN XD[3] XD[6] XD[1] XD[2] XCLK G1_TX G1_T G1_T G1_C G1_R GRE G2_T G2_T G2_R G2_R GRE G3_T MIITX G3_T G3_R M_M G4_T G4_T G4_T G4_R G4_C GRE G5_T G5_T G5_R G5_C G5_R G5_R G6_C G6_T D[5] XD[4] X ER OL XD[6] FC[2] XD[2] XD[6] XD[0] XD[6] FC[3] XD[2] CK[3] X ER XD[1] DC XD[0] XD[5] XD[7] XD[0] OL FC[5] XD[0] XD[6] XD[0] OL XD[4] X ER RS/L XD[0]
AK
G1_TX G1_T G1_R G1_R G1_R G1_R G2_T G2_T G2_T G2_C G3_C G3_T G3_T G3_T CM_ G4C G4_T MIITX G4_T G4_R G4_R G5_T G5_T G5_T G5_R G5_R G5_R G5_R MIITX GRE D[6] X EN XD[1] XD[3] X DV X ER XD[1] XD[5] X ER OL RS/L XD[0] XD[4] XD[7] CLK RS/L XD[2] CK[4] X EN XD[2] XD[3] XCLK XD[1] XD[7] XD[2] XCLK XD[7] X DV CK[6] FC[6]
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Zarlink Semiconductor Inc.
107
MVTX2803
11.3 Ball- Signal Descriptions
Data Sheet
All pins are CMOS type; all Input pins are 5 Volt tolerance, and all Output pins are 3.3 CMOS drive. Ball No(s) K27, L27, K30, K29, K28 L30 Symbol P_DATA[15:11] P_DATA[10] I/O I/O-TS with pull up I/O - TS with pull up Description Not used - leave unconnected Trunk enable External pull up or unconnected- disable trunk group 0 and 1 External pull down - enable trunk group 0 and 1 See register TRUNK0_MODE for port selection and trunk enable. Trunk enable External pull up or unconnected - disable trunk group 2 and 3 External pull down - enable trunk group 2 and 3 See register TRUNK1_MODE for port selection and trunk enable. Bootstrap function - See bootstrap section Not used - leave unconnected Not used - leave unconnected
N27
P_DATA[9]
I/O - TS with pull up
L29, L28, N26, M30, M29, M28, N30, N29, N28 J28 H28
P_DATA[8:0] P_A[2] P_INT#
I/O - TS with pull up Input Output
I2C Interface (0) Note: In unmanaged mode, Use I2C and Serial control interface to configure the system J27 M26 Serial Control Interface J29 L26 J30 Frame Buffer Interface PS_STROBE PS_DO PS_DI (AUTOFD) Input with weak internal pull up Input with weak internal pull up Output with pull up Serial Strobe Pin Serial Data Input Serial Data Output (AutoFD) SCL SDA Output I/O-TS with pull up I2C Data Clock I2C Data I/O
108
Zarlink Semiconductor Inc.
Data Sheet
Ball No(s) U1, U2, N4, U3, U4, T1, T2, N5, T3, T4, M4, R4, R3, R2, R1, M5, R5, L4, P3, P2, P1, N3, L5, N2, P5, N1, K4, M3, M2, M1, K5, L3, J5, K2, H4, K1, J4, J3, J2, H5, J1, H3, H2, H1, G3, G4, G5, G2, G1, F5, F4, F3, F2, F1, D3, E1, E2, E3, D2., E4, C3, D1, C1, B2 AA1, V5, AA2, AA3, Y1, V4, Y2, Y3, U5, W1, W2, W3, T5, V1, V2, P4, V3 W4 C2 K3 L1 L2 D18, B18, C18, A17, E17, B17, C17, E16, D17, B16, E15, C16, D16, D15, E14, C15, B15, E13, A15, D14, C14, D13, B14, A14, C13, E12, B13, A13, D12, C12, B12, A12, A11, E10, C10, B10, E9, A10, D11, D10, D8, D9, C9, B9, A9, C8, B8, A8, C7, E7, D7, B7, E8, A7, D6, C6, E6, B6, A6, A5, B5, C5, B4,A4 D22, D20, E20, D21, A21, D19, B21, C21, A20, B20, E19, C20, A19, B19, E18, C19, A18 E21 D5 B11 E11 C11 Symbol LA_D[63:0] I/O I/O-TS with pull up
MVTX2803
Description Frame Bank A- Data Bit [63:0]
LA_A[19:3]
Output
Frame Bank A - Address Bit [19:3] Frame Bank A - Address Bit [20] Frame Bank A Clock Input Frame Bank A Low Portion Chip Selection Frame Bank A High Portion Chip Selection Frame Bank A Read/Write Frame Bank B- Data Bit [63:0]
LA_A[20] LA_CLK LA_CS0# LA_CS1# LA_RW# LB_D[63:0]
Output with pull up Output Output with pull up Output with pull up Output with pull up I/O-TS with pull up.
LB_A[19:3]
Output
Frame Bank B - Address Bit [19:3]
LB_A[20] LB_CLK LB_CS0# LB_CS1# LB_RW#
Output with pull up Output Output with pull up Output with pull up Output with pull up
Frame Bank B - Address Bit [20] Frame Bank B Clock Input Frame Bank B Low Portion Chip Selection Frame Bank B High Portion Chip Selection Frame Bank B Read/Write
Zarlink Semiconductor Inc.
109
MVTX2803
Ball No(s) Switch Database Interface E24,B27, D27, C27, A27, A28, B30, D28, E27, C30, D30, G26, E28, D29, E26, E29, H26, E30, J26, F30, F29, F28, F27, H27, G30, G29, K26, G27, G28, H30, H29, M27 C22, B22, A22, E22, C23, B23, A23, C24, D24, D23, B24, A24, E23, C25, C26, B25, A25 C29 D25 B26 A26 MII Management Interface AJ16 AG18 M_MDC M_MDIO Output I/O-TS with pull up B_D[31:0] I/O-TS with pull up Symbol I/O
Data Sheet
Description
Switch Database Domain - Data Bit [31:0]
B_A[18:2]
Output
Switch Database Address (512K) - Address Bit [18:2]
B_CLK B_ADSC# B_WE# B_OE#
Output Output with pull up Output with pull up Output with pull up
Switch Database Clock Input Switch Database Address Status Control Switch Database Write Chip Select Switch Database Read Chip Select
MII Management Data Clock - (common for all MII Ports [7:0]) MII Management Data I/O - (common for all MII Ports -[7:0])) 2.5Mhz
GMII / MII Interface (193) Gigabit Ethernet Access Port
AD29, AK30, AJ22, AG17, AJ11, AJ6, AF3,AA4 AK15 AF17
GREF_CLK [7:0] CM_CLK IND/CM
Input w/ pull up Input w/ pull up Input w/ pull up
Gigabit Reference Clock Common Clock shared by port G[7:0] 1: select GREF_CLK[7:0] as clock 0: select CM_CLK as clock for all ports
AA30, AK29, AG25, AK18, AJ13, AH7, AH3, AB1
MII TX CLK[7:0]
Input w/ pull up
110
Zarlink Semiconductor Inc.
Data Sheet
Ball No(s) V26, W29, W30, Y28, W26, Y29, W27, Y30 AB26, AE27, AE28, AC27, AE29, AC26, AE30, AD26 AK27, AH27, AF26, AJ27, AH26, AK25, AG26, AJ25 AG22, AG21, AG20, AF22, AK21, AK20, AF21, AJ20 AG16, AF16, AG15, AF18, AF15, AH15, AJ15, AG14 AG11, AJ10, AF11, AF10, AG9, AF9, AH9, AJ9 AF6, AJ5, AF5, AG6, AK4, AF4, AK3, AH4 AF1, AC5, AE1, AE2, AE3, AC4, AE4, AD1 W28, AD30, AK28, AH22, AH16, AH10, AK5, AD5 V27, AD27, AJ28, AH23, AF19, AG12, AK6, AF2 AC30, AJ29, AG23, AK16, AK11, AH6, AG3, Y4 AA28, AF29, AJ26, AJ21, AF14, AK10, AJ4, AD3 AA29, AF27, AK26, AH21, AH14, AG10, AH5, AC1 AB28, Y26, AB29, AB30, AA27, AC28, AC29, AA26 AE26, AF28, AG30, AG28, AG27, AH29, AH28, AJ30 AK24, AJ24, AG24, AF24, AH24, AF23, AK23, AJ23 AJ19, AH19, AJ18, AH18, AF20, AK17, AG19, AJ17 AK14, AF13, AH13, AK13, AH12, AJ12, AF12, AK12 AF8, AJ8, AK8, AG7, AG8, AJ7, AK7, AF7 AG4, AK1, AJ1, AJ2, AH2, AH1, AG1, AE5 AA5, AD4, AC2, Y5, AC3, AB2, W5, AB3 Y27, AG29, AH25, AK19, AG13, AH8, AK2, AD2 AB27, AF30, AF25, AH20, AJ14, AK9, AJ3, AB5 Symbol G7_RXD[7:0] G6_RXD[7:0] G5_RXD[7:0] G4_RXD[7:0] G3_RXD[7:0] G2_RXD[7:0] G1_RXD[7:0] G0_RXD[7:0] I/O Input w/ pull up
MVTX2803
Description G[7:0] port - Receive Data Bit [7:0]
G[7:0]_RX_DV G[7:0]_RX_ER G[7:0]_CRS/LIN K G[7:0]_COL G[7:0]_RXCLK G7_TXD[7:0] G6_TXD[7:0] G5_TXD[7:0] G4_TXD[7:0] G3_TXD[7:0] G2_TXD[7:0] G1_TXD[7:0] G0_TXD[7:0]
Input w/ pull down Input w/ pull up Input w/ pull down Input w/ pull up Input w/ pull up Output
G[7:0]port - Receive Data Valid G[7:0]port - Receive Error G[7:0]port - Carrier Sense G[7:0]port - Collision Detected G[7:0]port - Receive Clock G[7:0]port - Transmit Data Bit [7:0]
G[7:0]_TX_EN G[7:0]_TX_ER
Output w/ pull up Output w/ pull up
G[7:0]port - Transmit Data Enable G[7:0]port - Transmit Error
Zarlink Semiconductor Inc.
111
MVTX2803
Ball No(s) AD28, AH30, AK22, AH17, AH11, AG5, AG2, AB4 Symbol G[7:0]_ TXCLK Output I/O
Data Sheet
Description G[7:0]port - Gigabit Transmit Clock
PMA Interface (193) Gigabit Ethernet Access Port (PCS) AD29, AK30, AJ22, AG17, AJ11, AJ6, AF3,AA4 AK15 AF17 GREF_CLK [7:0] CM_CLK IND/CM Input w/ pull up Input w/ pull up Input w/ pull up Gigabit Reference Clock Common Clock shared by port G[7:0] 1: select GREF_CLK[7:0] as clock 0: select CM_CLK as clock for all port G[7:0]port - PMA Receive Data Bit [7:0]
V26, W29, W30, Y28, W26, Y29, W27, Y30 AB26, AE27, AE28, AC27, AE29, AC26, AE30, AD26 AK27, AH27, AF26, AJ27, AH26, AK25, AG26, AJ25 AG22, AG21, AG20, AF22, AK21, AK20, AF21, AJ20 AG16, AF16, AG15, AF18, AF15, AH15, AJ15, AG14 AG11, AJ10, AF11, AF10, AG9, AF9, AH9, AJ9 AF6, AJ5, AF5, AG6, AK4, AF4, AK3, AH4 AF1, AC5, AE1, AE2, AE3, AC4, AE4, AD1 W28, AD30, AK28, AH22, AH16, AH10, AK5, AD5 V27, AD27, AJ28, AH23, AF19, AG12, AK6, AF2 AA28, AF29, AJ26, AJ21, AF14, AK10, AJ4, AD3 AA29, AF27, AK26, AH21, AH14, AG10, AH5, AC1
G7_RXD[7:0] G6_RXD[7:0] G5_RXD[7:0] G4_RXD[7:0] G3_RXD[7:0] G2_RXD[7:0] G1_RXD[7:0] G0_RXD[7:0]
Input w/ pull up
G[7:0]_RX_D[8] G[7:0]_RX_D[9] G[7:0]_RXCLK1 G[7:0]_RXCLK0
Input w/ pull down Input w/ pull up Input w/ pull up Input w/ pull up
G[7:0]port - PMA Receive Data Bit [8] G[7:0]port - PMA Receive Data Bit [9] G[7:0]port - PMA Receive Clock 1 G[7:0]port - PMA Receive Clock 0
112
Zarlink Semiconductor Inc.
Data Sheet
Ball No(s) AB28, Y26, AB29, AB30, AA27, AC28, AC29, AA26 AE26, AF28, AG30, AG28, AG27, AH29, AH28, AJ30 AK24, AJ24, AG24, AF24, AH24, AF23, AK23, AJ23 AJ19, AH19, AJ18, AH18, AF20, AK17, AG19, AJ17 AK14, AF13, AH13, AK13, AH12, AJ12, AF12, AK12 AF8, AJ8, AK8, AG7, AG8, AJ7, AK7, AF7 AG4, AK1, AJ1, AJ2, AH2, AH1, AG1, AE5 AA5, AD4, AC2, Y5, AC3, AB2, W5, AB3 2Y27, AG29, AH25, AK19, AG13, AH8, AK2, AD2 AB27, AF30, AF25, AH20, AJ14, AK9, AJ3, AB5 AD28, AH30, AK22, AH17, AH11, AG5, AG2, AB4 Test Facility (3) U29 T_MODE0 I/O-TS with pull up Symbol G7_TXD[7:0] G6_TXD[7:0] G5_TXD[7:0] G4_TXD[7:0] G3_TXD[7:0] G2_TXD[7:0] G1_TXD[7:0] G0_TXD[7:0] Output I/O
MVTX2803
Description G[7:0]port - PMA Transmit Data Bit [7:0]
3G[7:0]_TXD[8] G[7:0]_TX_D[9] G[7:0]_ TXCLK
4Output w/ pull up Output w/ pull up Output
5G[7:0]port - PMA Transmit Data Bit [8] G[7:0]port - PMA Transmit Data Bit [9] G[7:0]port - PMA Gigabit Transmit Clock
Test - Set upon Reset, and provides NAND Tree test output during test mode Use external Pull up for normal operation Test - Set upon Reset, and provides NAND Tree test output during test mode Use external Pull up for normal operation Enable test mode For normal operation leave it unconnected
U28
T_MODE1
I/O-TS with pull up
A3
SCAN_EN
Input with pull down
LED Interface (serial and parallel) R28, T26, R27, T27, U27, T28, T29, T30 T_D[7:0]/ LE_PD[7:0] Output While resetting, T_D[7,0] are in input mode and are used as strapping pins. Internal pull up LE_PD - Parallel Led data [7:0] While resetting, T_D[15:8] are in input mode and are used as strapping pins. Internal pull up LED_PR[7:0] - Parallel Led port selection [7:0]
P26, P30, P29, P28, P27, R26, R30, R29
T_D[15:8]/ LE_PT[7:0]
Output
Zarlink Semiconductor Inc.
113
MVTX2803
Ball No(s) V29 Symbol LE_CLK0/ LE_PT[8] Output I/O
Data Sheet
Description LE_CLK0 - LED Serial Interface Output Clock LE_PT[8] - Parallel Led port sel [8] While resetting, LED-BLINK is in input mode and is used as strapping pin. 1: No Blink, 0: Blink. Internal pull up. LE_DO - LED Serial Data Output Stream LE_PT[9] - Parallel Led port sel [9] While resetting, LED_PM is in input mode and is used as strapping pin. Internal pull up. 1: Enable parallel interface, 0: enable serial interface. LE_SYNCO# - LED Output Data Stream Envelop
V30
LED_BLINK/ LE_DO/ LE_PT[9]
Output
V28
LED_PM/ LE_SYNCO#
Output with pull up
System Clock, Power, and Ground Pins A16 U26 U30 B1 B28 AE7, AE9, F10, F21, F22, F9, G25, G6, J25, J6, K25, K6, AA25, AA6, AB25, AB6, AD25, AE10, AE21, AE22 V14, V15, V16, V17, V18, F16, F24, F25, F6, F7, N13, N14, N15, N16, N17, N18, P13, P14, P15, P16, P17, P18, R13, R14, R15, R16, R17, R18, R25, R6, T13, T14, T15, T16, T17, T18, T25, T6, U13, U14, U15, U16, U17, U18, V13, AD6, AE15, AE16, AE24, AE25, AE6, F15 A1, C28 E5, E25 S_CLK S_RST# RESOUT# DEV_CFG[0] DEV_CFG[1] VDD Input Input - ST Output Input w/ pull down Input w/ pull down Power core System Clock at 133 MHz Reset Input Reset PHY Not used Not used +2.5 Volt DC Supply
VSS
Ground
Ground
AVDD AVSS
Power Ground
Analog +2.5 Volt DC Supply Analog Ground
114
Zarlink Semiconductor Inc.
Data Sheet
Ball No(s) AE12, AE13, AE14, AE17, AE18, AE19, F12, F13, F14, F17, F18, F19, M25, M6, N25, N6, P25, P6, U25, U6, V25, V6, W25, W6 Symbol VDD33 I/O Power I/O
MVTX2803
Description +3.3 Volt DC Supply
Bootstrap Pins (Default= pull up, 1= pull up 0= pull down) AD2 G0_TX_EN Default: PCS Giga0 Mode: G0_TXEN G0_TXER 0 0 MII 0 1 RSVD 1 0 GMII 1 1 PCS
AB5 AK2
G0_TX_ER G1_TX_EN
Default: PCS Default: PCS Giga1 Mode: G1_TXEN 0 0 1 1 G1_TXER 0 MII 1 RSVD 0 GMII 1 PCS
AJ3 AH8
G1_TXER G2_TX_EN
Default: PCS Default: PCS Giga2 Mode: G0_TXEN G0_TXER 0 0 MII 0 1 RSVD 1 0 GMII 1 1 PCS
AK9 AG13
G2_TX_ER G3_TX_EN
Default: PCS Default: PCS Giga3 Mode: G0_TXEN G0_TXER 0 0 MII 0 1 RSVD 1 0 GMII 1 1 PCS
AJ14 AK19
G3_TX_ER G4_TX_EN
Default: PCS Default: PCS Giga4 Mode: G0_TXEN G0_TXER 0 0 MII 0 1 RSVD 1 0 GMII 1 1 PCS
AH20
G4_TX_ER
Default: PCS
Zarlink Semiconductor Inc.
115
MVTX2803
Ball No(s) AH25 Symbol G5_TX_EN I/O Default: PCS
Data Sheet
Description Giga5 Mode: G0_TXEN 0 0 1 1 G0_TXER 0 MII 1 RSVD 0 GMII 1 PCS
AF25 AG29
G5_TX_ER G6_TX_EN
Default: PCS Default: PCS Giga6 Mode: G0_TXEN G0_TXER 0 0 MII 0 1 RSVD 1 0 GMII 1 1 PCS
AF30 Y27
G6_TX_ER G7_TX_EN
Default: PCS Default: PCS Giga7 Mode: G0_TXEN G0_TXER 0 0 MII 0 1 RSVD 1 0 GMII 1 1 PCS
AB27
G7_TX_ER
Default: PCS
After reset T_d[15:0] are used by the LED interface
T30
T_d[0]
1
Giga link active status 0 - active low 1 - active high Power saving 0 - No power saving 1 - Power saving Stop MAC clock if no MAC activity. Reserved - Must be pulled-down Hot plug port module detection enable 0 - module detection enable 1 - module detection disable Reserved - Must be pulled-down SRAM memory size 0 - 512K SRAM 1 - 256K SRAM Reserved
T29
T_d[1]
1
T28 U27
T_d[2] T_d[3]
Must be pulled-down 1
T27 R27
T_d[4] T_d[5]
Must be pulled-down 1
T26 R28
T_d[6] T_d[7] 1
FDB memory depth 1- one memory layer 0 - two memory layers
116
Zarlink Semiconductor Inc.
Data Sheet
Ball No(s) Symbol La_a[20], Lb_a[20] 11 I/O
MVTX2803
Description FDB memory size 11 - 2M per bank = 4M total 10 - 1M per bank = 2M total 0x - 512K per bank = 1M total EEPROM installed 0 - EEPROM is installed 1 - EEPROM is not installed MCT Aging enable 0 - MCT aging disable 1 - MCT aging enable FCB handle aging enable 0 - FCB handle aging disable 1 - FCB handle aging enable Timeout reset enable 0 - timeout reset disable 1 - timeout reset enable Issue reset if any state machine did not go back to idle for 5sec. External RAM test 0 - Perform the infinite loop of ZBT RAM BIST. Debug test only 1 - Regular operation. ZBT RAM la_clk turning 3'b000 - control by reg. LCLKCR[2:0] 3'b001 - delay by method # 0 3'b010 - delay by method # 1 3'b011 - delay by method # 2 3'b100 - delay by method # 3 3'b101 - delay by method # 4 3'b110 - delay by method # 5 3'b111 - delay by method # 6 - USE THIS METHOD ZBT RAM lb_clk turning 3'b000 - control by reg. LCLKCR[6:4] 3'b001 - delay by method # 0 3'b010 - delay by method # 1 3'b011 - delay by method # 2 3'b100 - delay by method # 3 3'b101 - delay by method # 4 3'b110 - delay by method # 5 3'b111 - delay by method # 6- USE THIS METHOD
R29
T_d[8]
1
R30
T_d[9]
1
R26
T_d[10]
1
P27
T_d[11]
1
P26
T_d[15]
1
N30, N29, N28
P_d[2:0]
111
M30, M29, M28
P_d[5:3]
111
Zarlink Semiconductor Inc.
117
MVTX2803
Ball No(s) L29, L28, N26 Symbol P_d[8:6] 111 I/O
Data Sheet
Description SBRAM b_clk turning 3'b000 - control by BCLKCR[2:0] 3'b001 - delay by method # 0 3'b010 - delay by method # 1 3'b011 - delay by method # 2 3'b100 - delay by method # 3 3'b101 - delay by method # 4 3'b110 - delay by method # 5 3'b111 - delay by method # 6- USE THIS METHOD
Notes: # = Active low signal Input = Input signal In-ST = Input signal with Schmitt-Trigger Output = Output signal (Tri-State driver) Out-OD= Output signal with Open-Drain driver I/O-TS = Input & Output signal with Tri-State driver I/O-OD = Input & Output signal with Open-Drain driver
118
Zarlink Semiconductor Inc.
Data Sheet
11.4
Ball No.
MVTX2803
Ball Signal Name
Signal Name AVDD DEV_CFG[0] LA_D[0] LA_CLK LA_D[1] LA_D[2] LA_D[3] LA_D[4] LA_D[5] LA_D[6] LA_D[7] LA_D[8] LA_D[9] LA_D[10] LA_D[11] LA_D[12] LA_D[13] LA_D[14] LA_D[15] LA_D[16] LA_D[17] LA_D[18] LA_D[19] LA_D[20] LA_D[21] LA_D[22] LA_D[23] LA_D[24] LA_D[25] LA_D[26] Ball No. M1 M2 M3 K4 N1 P5 N2 L5 N3 P1 P2 P3 L4 R5 M5 R1 R2 R3 R4 M4 T4 T3 N5 T2 T1 U4 U3 N4 U2 U1 Signal Name LA_D[34] LA_D[35] LA_D[36] LA_D[37] LA_D[38] LA_D[39] LA_D[40] LA_D[41] LA_D[42] LA_D[43] LA_D[44] LA_D[45] LA_D[46] LA_D[47] LA_D[48] LA_D[49] LA_D[50] LA_D[51] LA_D[52] LA_D[53] LA_D[54] LA_D[55] LA_D[56] LA_D[57] LA_D[58] LA_D[59] LA_D[60] LA_D[61] LA_D[62] LA_D[63] Ball No. Y2 V4 Y1 AA3 AA2 V5 AA1 W4 Y4 AA4 AB4 AB3 W5 AB2 AB1 AC3 Y5 AC2 AC1 AD3 AD4 AA5 AD2 AB5 AD1 AE4 AC4 AE3 AE2 AE1 Signal Name LA_A[13] LA_A[14] LA_A[15] LA_A[16] LA_A[17] LA_A[18] LA_A[19] LA_A[20] G0_CRS/LINK GREF_CLK[0] G0_TXCLK G0_TXD[0] G0_TXD[1] G0_TXD[2] MII_TX_CLK[0] G0_TXD[3] G0_TXD[4] G0_TXD[5] G0_RXCLK G0_COL G0_TXD[6] G0_TXD[7] G0_TX_EN G0_TX_ER G0_RXD[0] G0_RXD[1] G0_RXD[2] G0_RXD[3] G0_RXD[4] G0_RXD[5]
A1 B1 B2 C2 C1 D1 C3 E4 D2 E3 E2 E1 D3 F1 F2 F3 F4 F5 G1 G2 G5 G4 G3 H1 H2 H3 J1 H5 J2 J3
Zarlink Semiconductor Inc.
119
MVTX2803
Ball No.
Data Sheet
Ball No. V3 P4 V2 V1 T5 W3 W2 W1 U5 Y3 AG10 AK10 AJ10 AG11 AH10 AG12 AK11 AJ11 AH11 AK12 AF12 AJ12 AH12 AK13 AJ13 AH13 AF13 AK14 AG13 AJ14 AH14 Signal Name LA_A[3] LA_A[4] LA_A[5] LA_A[6] LA_A[7] LA_A[8] LA_A[9] LA_A[10] LA_A[11] LA_A[12] G2_RXCLK G2_COL G2_RXD[6] G2_RXD[7] G2_RX_DV G2_RX_ER G3_CRS/LINK GREF_CLK[3] G3_TXCLK G3_TXD[0] G3_TXD[1] G3_TXD[2] G3_TXD[3] G3_TXD[4] MII_TX_CLK[3] G3_TXD[5] G3_TXD[6] G3_TXD[7] G3_TX_EN G3_TX_ER G3_RXCLK Ball No. AC5 AF1 AD5 AF2 AF3 AG2 AG3 AE5 AG1 AH1 AG19 AK17 AF20 AH18 AJ18 AK18 AH19 AJ19 AK19 AH20 AJ20 AF21 AK20 AH21 AJ21 AK21 AF22 AG20 AG21 AG22 AH22 Signal Name G0_RXD[6] G0_RXD[7] G0_RX_DV G0_RX_ER GREF_CLK[1] G1_TXCLK G1_CRS/LINK G1_TXD[0] G1_TXD[1] G1_TXD[2] G4_TXD[1] G4_TXD[2] G4_TXD[3] G4_TXD[4] G4_TXD[5] MII_TX_CLK[4] G4_TXD[6] G4_TXD[7] G4_TX_EN G4_TX_ER G4_RXD[0] G4_RXD[1] G4_RXD[2] G4_RXCLK G4_COL G4_RXD[3] G4_RXD[4] G4_RXD[5] G4_RXD[6] G4_RXD[7] G4_RX_DV
Signal Name LA_D[27] LA_D[28] LA_D[29] LA_D[30] LA_D[31] LA_CS0# LA_CS1# LA_RW# LA_D[32] LA_D[33] G1_TXD[3] G1_TXD[4] G1_TXD[5] G1_TXD[6] G1_TXD[7] G1_TX_EN MII_TX_CLK[1] G1_TX_ER G1_RXD[0] G1_RXD[1] G1_RXD[2] G1_RXD[3] G1_RXCLK G1_COL G1_RXD[4] G1_RXD[5] G1_RXD[6] G1_RXD[7] G1_RX_DV G1_RX_ER GREF_CLK[2]
J4 K1 H4 K2 J5 K3 L1 L2 L3 K5 AH2 AJ2 AJ1 AK1 AG4 AK2 AH3
AJ3
AH4 AK3 AF4 AK4 AH5 AJ4 AG6 AF5 AJ5 AF6 AK5 AK6 AJ6
120
Zarlink Semiconductor Inc.
Data Sheet
Ball No.
MVTX2803
Ball No. AF14 AG14 AK15 AF17 AJ15 AH15 AF15 AF18 AG15 AF16 AG16 AH16 AF19 AJ16 AG18 AK16 AG17 AH17 AJ17 AA27 AB30 AB29 Y26 AB28 Y27 AB27 AA30 AA29 AA28 Y30 W27 Signal Name G3_COL G3_RXD[0] CM_CLK IND_CM G3_RXD[1] G3_RXD[2] G3_RXD[3] G3_RXD[4] G3_RXD[5] G3_RXD[6] G3_RXD[7] G3_RX_DV G3_RX_ER M_MDC M_MDIO G4_CRS/LINK GREF_CLK[4] G4_TXCLK G4_TXD[0] G7_TXD[3] G7_TXD[4] G7_TXD[5] G7_TXD[6] G7_TXD[7] G7_TX_EN G7_TX_ER MII_TX_CLK[7] G7_RXCLK G7_COL G7_RXD[0] G7_RXD[1] Ball No. AJ22 AK22 AH23 AG23 AJ23 AK23 AF23 AH24 AF24 AG24 AJ24 AK24 AG25 AH25 AF25 AJ25 AG26 AK25 AK26 P29 P30 P26 N28 N29 N30 M28 M29 M30 N26 L28 L29 Signal Name GREF_CLK[5] G5_TXCLK G4_RX_ER G5_CRS/LINK G5_TXD[0] G5_TXD[1] G5_TXD[2] G5_TXD[3] G5_TXD[4] G5_TXD[5] G5_TXD[6] G5_TXD[7] MII_TX_CLK[5] G5_TX_EN G5_TX_ER G5_RXD[0] G5_RXD[1] G5_RXD[2] G5_RXCLK T_D[13] T_D[14] T_D[15] P_D[0] P_D[1] P_D[2] P_D[3] P_D[4] P_D[5] P_D[6] P_D[7] P_D[8]
Signal Name G2_TXCLK G2_CRS/LINK G2_TXD[0] G2_TXD[1] G2_TXD[2] G2_TXD[3] G2_TXD[4] MII_TX_CLK[2] G2_TXD[5] G2_TXD[6] G2_TXD[7] G2_TX_EN G2_TX_ER G2_RXD[0] G2_RXD[1] G2_RXD[2] G2_RXD[3] G2_RXD[4] G2_RXD[5] G5_COL G5_RXD[3] G5_RXD[4] G5_RXD[5] G5_RXD[6] G5_RXD[7] G5_RX_DV G5_RX_ER G6_CRS/LINK MII_TX_CLK[6] GREF_CLK[6] G6_TXD[0]
AG5 AH6 AF7 AK7 AJ7 AG8 AG7 AH7 AK8 AJ8 AF8 AH8 AK9 AJ9 AH9 AF9 AG9 AF10 AF11 AJ26 AH26 AJ27 AF26 AH27 AK27 AK28 AJ28 AJ29 AK29 AK30 AJ30
Zarlink Semiconductor Inc.
121
MVTX2803
Ball No.
Data Sheet
Ball No. Y29 W26 Y28 W30 W29 V26 W28 V27 V30 V29 V28 U26 U30 U29 U28 T30 T29 T28 U27 T27 R27 T26 R28 R29 R30 R26 P27 P28 A23 B23 C23 Signal Name G7_RXD[2] G7_RXD[3] G7_RXD[4] G7_RXD[5] G7_RXD[6] G7_RXD[7] G7_RX_DV G7_RX_ER LE_DO LE_CLK0 LE_SYNCO# S_RST# RESOUT# T_MODE[0] T_MODE[1] T_D[0] T_D[1] T_D[2] T_D[3] T_D[4] T_D[5] T_D[6] T_D[7] T_D[8] T_D[9] T_D[10] T_D[11] T_D[12] B_A[12] B_A[13] B_A[14] Ball No. N27 L30 K28 K29 K30 L27 K27 M26 J27 J28 J29 J30 L26 H28 M27 H29 H30 G28 G27 K26 G29 G30 H27 F27 F28 F29 F30 J26 E14 C15 B15 Signal Name P_D[9] P_D[10] P_D[11] P_D[12] P_D[13] P_D[14] P_D[15] P_A[0] P_A[1] P_A[2] P_WE# P_RD# P_CS# P_INT# B_D[0] B_D[1] B_D[2] B_D[3] B_D[4] B_D[5] B_D[6] B_D[7] B_D[8] B_D[9] B_D[10] B_D[11] B_D[12] B_D[13] LB_D[49] LB_D[48] LB_D[47]
Signal Name G6_TXD[1] G6_TXD[2] G6_TXD[3] G6_TXD[4] G6_TXCLK G6_TXD[5] G6_TXD[6] G6_TXD[7] G6_TX_EN G6_RXCLK G6_COL G6_TX_ER G6_RXD[0] G6_RXD[1] G6_RXD[2] G6_RXD[3] G6_RXD[4] G6_RXD[5] G6_RXD[6] G6_RXD[7] G6_RX_DV GREF_CLK[7] G6_RX_ER G7_TXCLK G7_CRS/LINK G7_TXD[0] G7_TXD[1] G7_TXD[2] B_D[14] B_D[15] B_D[16]
AH28 AH29 AG27 AG28 AH30 AG30 AF28 AE26 AG29 AF27 AF29 AF30 AD26 AE30 AC26 AE29 AC27 AE28 AE27 AB26 AD30 AD29 AD27 AD28 AC30 AA26 AC29 AC28 E30 H26 E29
122
Zarlink Semiconductor Inc.
Data Sheet
Ball No.
MVTX2803
Ball No. E22 A22 B22 C22 E21 D22 D20 E20 D21 A21 D19 B21 C21 A20 B20 E19 C20 A19 B19 E18 C19 A18 D18 B18 C18 A17 E17 B17 C17 E16 D17 Signal Name B_A[15] B_A[16] B_A[17] B_A[18] LB_A[20] LB_A[19] LB_A[18] LB_A[17] LB_A[16] LB_A[15] LB_A[14] LB_A[13] LB_A[12] LB_A[11] LB_A[10] LB_A[9] LB_A[8] LB_A[7] LB_A[6] LB_A[5] LB_A[4] LB_A[3] LB_D[63] LB_D[62] LB_D[61] LB_D[60] LB_D[59] LB_D[58] LB_D[57] LB_D[56] LB_D[55] Ball No. E13 A15 D14 C14 D13 B14 A14 C13 E12 B13 A13 D12 C12 B12 A12 C11 E11 B11 A11 E10 C10 B10 E9 A10 D11 D10 D8 D9 C9 B9 A9 Signal Name LB_D[46] LB_D[45] LB_D[44] LB_D[43] LB_D[42] LB_D[41] LB_D[40] LB_D[39] LB_D[38] LB_D[37] LB_D[36] LB_D[35] LB_D[34] LB_D[33] LB_D[32] LB_RW# LB_CS1# LB_CS0# LB_D[31] LB_D[30] LB_D[29] LB_D[28] LB_D[27] LB_D[26] LB_D[25] LB_D[24] LB_D[23] LB_D[22] LB_D[21] LB_D[20] LB_D[19]
Signal Name B_D[17] B_D[18] B_D[19] B_D[20] B_D[21] B_D[22] B_D[23] B_CLK B_D[24] B_D[25] NC1 NC2 NC3 NC4 NC5 AGND DEV_CFG[1] AVDD B_D[26] B_D[27] B_D[28] B_D[29] B_D[30] B_D[31] B_ADSC# B_WE# B_OE# B_A[2] B_A[3] B_A[4] B_A[5]
E26 D29 E28 G26 D30 C30 E27 C29 D28 B30 F26 D26 A30 A29 B29 E25 B28 C28 A28 A27 C27 D27 B27 E24 D25 B26 A26 A25 B25 C26 C25
Zarlink Semiconductor Inc.
123
MVTX2803
Ball No.
Data Sheet
Ball No. A16 B16 E15 C16 D16 D15 P15 P16 P17 P18 R13 R14 R15 R16 R17 R18 R25 R6 T13 T14 T15 T16 T17 T18 T25 T6 U13 U14 U15 U16 U17 Signal Name S_CLK LB_D[54] LB_D[53] LB_D[52] LB_D[51] LB_D[50] VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS Ball No. C8 B8 A8 C7 E7 D7 AE7 AE9 F10 F21 F22 F9 G25 G6 J25 J6 K25 K6 AE12 AE13 AE14 AE17 AE18 AE19 F12 F13 F14 F17 F18 F19 M25 Signal Name LB_D[18] LB_D[17] LB_D[16] LB_D[15] LB_D[14] LB_D[13] VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VD33 VD33 VD33 VD33 VD33 VD33 VD33 VD33 VD33 VD33 VD33 VD33 VD33
Signal Name B_A[6] B_A[7] B_A[8] B_A[9] B_A[10] B_A[11] LB_D[12] LB_D[11] LB_D[10] LB_D[9] LB_D[8] LB_D[7] LB_D[6] LB_D[5] LB_D[4] LB_D[3] LB_D[2] LB_D[1] LB_CLK LB_D[0] SCAN_EN AGND NC6 NC7 NC8 NC9 VSS VSS VSS VSS VSS
E23 A24 B24 D23 D24 C24 B7 E8 A7 D6 C6 E6 B6 A6 A5 B5 C5 B4 D5 A4 A3 E5 C4 B3 D4 A2 AD6 AE15 AE16 AE24 AE25
124
Zarlink Semiconductor Inc.
Data Sheet
Ball No.
MVTX2803
Ball No. U18 V13 V14 V15 V16 V17 V18 AA25 AA6 AB25 AB6 AD25 AE10 AE21 AE22 Signal Name VSS VSS VSS VSS VSS VSS VSS VDD VDD VDD VDD VDD VDD VDD VDD Ball No. M6 N25 N6 P25 P6 U25 U6 V25 V6 W25 W6 Signal Name VD33 VD33 VD33 VD33 VD33 VD33 VD33 VD33 VD33 VD33 VD33
Signal Name VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS
AE6 F15 F16 F24 F25 F6 F7 N13 N14 N15 N16 N17 N18 P13 P14
11.5 11.5.1
AC/DC Timing Absolute Maximum Ratings
-65C to +150C -40C to +85C +3.0 V to +3.6 V +2.38 V to +2.75 V -0.5 V to (VDD33 + 3.3 V)
Storage Temperature Operating Temperature Supply Voltage VDD33 with Respect to VSS Supply Voltage VDD with Respect to VSS Voltage on Input Pins
Caution: Stress above those listed may damage the device. Exposure to the Absolute Maximum Ratings for extended periods may affect device reliability. Functionality at or above these limits is not implied.
11.5.2
DC Electrical Characteristics
VDD33 = 3.0 V to 3.6 V (3.3v +/- 10%)TAMBIENT = -40C to +85C VDD = 2.5V +10% - 5%
Zarlink Semiconductor Inc.
125
MVTX2803
11.5.3 Recommended Operation Conditions
Preliminary Symbol fosc IDD1 IDD2 VOH VOL VIH-TTL VIL-TTL IIH-5VT CIN COUT CI/O Parameter Description Frequency of Operation Supply Current - @ 133 MHz (3.3V Supply) Supply Current - @ 133 MHz (2.5V Supply)) Output High Voltage (CMOS) Output Low Voltage (CMOS) Input High Voltage (TTL 5V tolerant) Input Low Voltage (TTL 5V tolerant) Input Leakage Current (0.1 V < VIN < VDD33) Input Capacitance Output Capacitance I/O Capacitance VDD33 x 70% 720 1400 VDD33 - 0.5 0.5
Data Sheet
Unit Min Type 133 930 1700 Max MHz mA mA V V V V A pF pF pF
VDD33 + 2.0 VCC x 30% 10 5 5 7
11.6 11.6.1
Local Frame Buffer ZBT SRAM Memory Interface Local ZBT SRAM Memory Interface A:
LA_CLK L1 LA_D[63:0] L2
Figure 6 - Local Memory Interface - Input setup and hold timing
LB_CLK L3-max L3-min LB_D[63:0] L4-max L4-min LB_A[20:3] L6-max L6-min LB_CS[1,0]#] L3-max L3-min LB_RW#
Figure 7 - Local Memory Interface - Output valid delay timing
126
Zarlink Semiconductor Inc.
Data Sheet AC Characteristics - Local frame buffer ZBT-SRAM Memory Interface A
(SCLK= 133MHz) Symbol L1 L2 L3 L4 L6 L9 Parameter LA_D[63:0] input set-up time LA_D[63:0] input hold time LA_D[63:0] output valid delay LA_A[20:3] output valid delay LA_CS[1:0]# output valid delay LA_WE# output valid delay Min (ns) 2.5 1 3 3 3 3 5 5 5 5 Max (ns)
MVTX2803
Note:
CL = 25pf CL = 30pf CL = 30pf CL = 25pf
Table 6 - AC Characteristics - Local frame buffer ZBT-SRAM Memory Interface A
11.6.2
Local ZBT SRAM Memory Interface B:
LB_CLK L1 LB_D[63:0] L2
Figure 8 - Local Memory Interface - Input setup and hold timing
LB_CLK L3-max L3-min LB_D[63:0] L4-max L4-min LB_A[20:3] L6-max L6-min LB_CS[1,0]#] L9-max L9-min LB_RW#
Figure 9 - Local Memory Interface - Output valid delay timing
Zarlink Semiconductor Inc.
127
MVTX2803
Local frame buffer ZBT-SRAM Memory Interface B
(SCLK= 133MHz) Symbol L1 L2 L3 L4 L6 L9 Parameter LB_D[63:0] input set-up time LB_D[63:0] input hold time LB_D[63:0] output valid delay LB_A[20:3] output valid delay LB_CS[1:0]# output valid delay LB_WE# output valid delay Min (ns) 2.5 1 3 3 3 3 5 5 5 5 Max (ns) Note:
Data Sheet
CL = 25pf CL = 30pf CL = 30pf CL = 25pf
Table 7 - Local frame buffer ZBT-SRAM Memory Interface B
11.7 11.7.1
Local Switch Database SBRAM Memory Interface Local SBRAM Memory Interface:
B_CLK L1 B_D[31:0] L2
Figure 10 - Local Memory Interface - Input setup and hold timing
B_CLK L3-max L3-min B_D[31:0] L4-max L4-min B_A[18:2] L6-max L6-min B_ADSC# L10-max L10-min B_WE# L11-max L11-min B_OE#
Figure 11 - Local Memory Interface - Output valid delay timing
128
Zarlink Semiconductor Inc.
Data Sheet AC Characteristics - Local Switch Database SBRAM Memory Interface
(SCLK= 133MHz) Symbol L1 L2 L3 L4 L6 L10 L11 Parameter B_D[63:0] input set-up time B_D[63:0] input hold time B_D[63:0] output valid delay B_A[20:3] output valid delay B_ADSC# output valid delay B_WE# output valid delay B_OE# output valid delay Min (ns) 2.5 1 3 3 3 3 3 5 5 5 5 4 Max (ns)
MVTX2803
Note:
CL = 25pf CL = 30pf CL = 30pf CL = 25pf CL = 25pf
Table 8 - AC Characteristics - Local Switch Database SBRAM Memory Interface
11.8 11.8.1
AC Characteristics Media Independent Interface
MII_TXCLK[7:0] M6-max M6-min G[7:0]_TXEN M7-max M7-min G[7:0]_TXD[3:0]
Figure 12 - AC Characteristics - Media Independent Interface
G[7:0]_RXCLK
M2 G[7:0]_RXD[3:0] M4 G[7:0]_CRS_DV M5 M3
Figure 13 - AC Characteristics - Media Independent Interface
Zarlink Semiconductor Inc.
129
MVTX2803
AC Characteristics - Media Independent Interface
(MII_TXCLK & G_RXCLK = 25MHz) Symbol M2 M3 M4 M5 M6 M7 Parameter G[7:0]_RXD[3:0] Input Setup Time G[7:0]_RXD[3:0] Input Hold Time G[7:0]_CRS_DV Input Setup Time G[7:0]_CRS_DV Input Hold Time G[7:0]_TXEN Output Delay Time G[7:0]_TXD[3:0] Output Delay Time Min (ns) 4 1 4 1 3 3 11 11 Max (ns)
Data Sheet
Note:
CL = 20 pF CL = 20 pF
Table 9 - AC Characteristics - Media Independent Interface
11.8.2
Gigabit Media Independent Interface
G[7:0]_TXCLK G12-max G12-min G[7:0]_TXD[7:0] G13 max G13-min G[7:0]_TX_EN G14-max G14-min G[7:0]_TX_ER
Figure 14 - AC Characteristics- GMII
G[7:0]_RXCLK G1 G[7:0]_RXD[7:0] G3 G[7:0]_RX_DV G5 G[7:0]_RX_ER G7 G[7:0]_RX_CRS G8 G6 G4 G2
Figure 15 - AC Characteristics - Gigabit Media Independent Interface
130
Zarlink Semiconductor Inc.
Data Sheet AC Characteristics - Gigabit Media Independent Interface
(G_RCLK & G_REFCLK = 125MHz) Symbol G1 G2 G3 G4 G5 G6 G7 G8 G12 G13 G14 Parameter
G[7:0]_RXD[7:0] Input Setup Times G[7:0]_RXD[7:0] Input Hold Times G[7:0]_RX_DV Input Setup Times G[7:0]_RX_DV Input Hold Times G[7:0]_RX_ER Input Setup Times G[7:0]_RX_ER Input Hold Times G[7:0]_CRS Input Setup Times G[7:0]_CRS Input Hold Times G[7:0]_TXD[7:0] Output Delay Times G[7:0]_TX_EN Output Delay Times G[7:0]_TX_ER Output Delay Times
MVTX2803
Min (ns) 2 1 2 1 2 1 2 1 1 1 1
Max (ns)
Note:
5 5 5
CL = 20pf CL = 20pf CL = 20pf
Table 10 - AC Characteristics - Gigabit Media Independent Interface
11.8.3
PCS Interface
G[7:0]_TXCLK G30-max G30-min G[7:0]_TXD[9:0]
Figure 16 - AC Characteristics - PCS Interface
G[7:0]_RXCLK1 G[7:0]_RXCLK G21 G[7:0]_RXD[9:0] G25 G26 G[7:0]_RX+CRS G22 G23 G24
Figure 17 - AC Characteristics - PCS Interface
Zarlink Semiconductor Inc.
131
MVTX2803
AC Characteristics - PCS Interface
(G_RCLK & G_REFCLK = 125MHz) Symbol G21 G22 G23 G24 G25 G26 G30 G_RXCLK
G[7:0]_RXD[9:0] Input Hold Times ref to
Data Sheet
Parameter
G[7:0]_RXD[9:0] Input Setup Times ref to
Min (ns) 2 1 2 1 2 1 1
Max (ns)
Note:
G_RXCLK
G[7:0]_RXD[9:0] Input Setup Times ref to
G_RXCLK1
G[7:0]_RXD[9:0] Input Hold Times ref to
G_RXCLK1
G[7:0]_CRS Input Setup Times G[7:0]_CRS Input Hold Times G[7:0]_TXD[9:0] Output Delay Times
5
CL = 20pf
Table 11 - AC Characteristics - PCS Interface
11.8.4
LED Interface
LED_CLK] LE5-max LE5-min LED_SYN LE6-max LE6-min LED_BIT
Figure 18 - AC Characteristics - LED Interface
AC Characteristics - LED Interface
Variable FREQ. Symbol LE5 LE6 Parameter LED_SYN Output Valid Delay LED_BIT Output Valid Delay Min(ns) 1 1 Max (ns) 7 7 Note: CL = 30pf CL = 30pf
Table 12 - AC Characteristics - LED Interface
132
Zarlink Semiconductor Inc.
Data Sheet
11.8.5 MDIO Input Setup and Hold Timing
MDC D1 MDIO D2
MVTX2803
Figure 19 - MDIO Input Setup and Hold Timing
MDC D3-max D3-min MDIO
Figure 20 - MDIO Output Delay Timing
MDIO Timing
1MHz Symbol D1 D2 D3 Parameter MDIO input setup time MDIO input hold time MDIO output delay time Min (ns) 10 2 1 Table 13 - MDIO Timing 20 CL = 50pf Max (ns) Note:
11.8.6
I2C Input Setup Timing
SDL S1 SDA S2
Figure 21 - I2C Input Setup Timing
SCL S3-max S3-min SDA
Figure 22 - I 2C Output Delay Timing
Zarlink Semiconductor Inc.
133
MVTX2803
I2C Timing
500KHz Symbol S1 S2 S3* Parameter SDA input setup time SDA input hold time SDA output delay time Min (ns) 20 1 1 20 Max (ns) Note:
Data Sheet
CL = 30pf
* Open Drain Output. Low to High transistor is controlled by external pullup resistor.
Table 14 - I 2C Timing
11.8.7
Serial Interface Setup Timing
STROBE D1 PS_DI D2 D4 D5 D1 D2
Figure 23 - Serial Interface Setup Timing
STROBE D3-max D3-min PS_D0
Figure 24 - Serial Interface Output Delay Timing
Serial Interface Timing
(SCLK =133 MHz) Symbol D1 D2 D3 D4 D5 Parameter PS_DI setup time PS_DI hold time PS_DO output delay time Strobe low time Strobe high time Min (ns) 20 10 1 5s 5s Table 15 - Serial Interface Timing 50 CL = 100pf Max (ns) Note:
134
Zarlink Semiconductor Inc.
E1
E
MIN MAX A 2.20 2.46 A1 0.50 0.70 A2 1.17 REF 40.20 D 39.80 D1 34.50 REF E 40.20 39.80 E1 34.50 REF b 0.60 0.90 e 1.27 596 Conforms to JEDEC MS - 034
e
D1
D
A2
NOTE:
b
A1 A
1. CONTROLLING DIMENSIONS ARE IN MM 2. DIMENSION "b" IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER 3. SEATING PLANE IS DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS. 4. N IS THE NUMBER OF SOLDER BALLS 5. NOT TO SCALE. 6. SUBSTRATE THICKNESS IS 0.56 MM
Package Code
ISSUE ACN DATE APPRD.
Previous package codes:
For more information about all Zarlink products visit our Web Site at
www.zarlink.com
Information relating to products and services furnished herein by Zarlink Semiconductor Inc. trading as Zarlink Semiconductor or its subsidiaries (collectively "Zarlink") is believed to be reliable. However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink. This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink's conditions of sale which are available on request.
Purchase of Zarlink's I2C components conveys a licence under the Philips I2C Patent rights to use these components in an I2C System, provided that the system conforms to the I2C Standard Specification as defined by Philips. Zarlink and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc. Copyright 2002, Zarlink Semiconductor Inc. All Rights Reserved.
TECHNICAL DOCUMENTATION - NOT FOR RESALE


▲Up To Search▲   

 
Price & Availability of MVTX2803

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X